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1. Introduction

The blood-brain barrier is altered in epilepsy. This includes altered expression of
transporters and metabolic enzymes as well as barrier leakage that have been linked to
antiepileptic drug resistance and seizure genesis, respectively. Here we highlight current
understanding of these pathological changes. Three critical components of barrier function -
1) tight junctions, 2) metabolising enzymes and 3) transporter proteins - are introduced and
we describe how they are changed in epilepsy and affected by epilepsy treatment. Recent
efforts in blood-brain barrier research to overcome drug-resistant epilepsy are also
discussed.

2. The blood-brain barrier

The History of Blood-Brain Barrier Discovery. First experiments contributing to the
discovery of the blood-brain barrier were performed by Paul Ehrlich in 1885 (Figure 1).
Ehrlich observed that water-soluble “vital dyes” injected into the blood of rats did not stain
the brain (Ehrlich, 1885). In 1900, Lewandowsky made similar observations and coined the
term  “blood-brain barrier” (“Bluthirnschranke”) to explain this phenomenon
(Lewandowsky, 1900). Ehrlich’s student, Edwin Goldmann, injected the same dyes Ehrlich
had used into the subarachnoid space, and found the opposite: intense staining of the brain
but no staining of peripheral tissues (Goldmann, 1909; 1913). Goldmann concluded that a
barrier had to exist between the brain and the periphery, thus the concept of a vascular
barrier was born. In 1923, Spatz postulated that the brain capillary endothelium had to be
the structure responsible for barrier function, which initiated a debate that lasted for
decades (Spatz, 1933). It was Reese and Karnovsky, and Brightman and Reese who solved
the mystery of the blood-brain barrier in the late 1960s. Using electron microscopy, they
discovered that tight junctions connect adjacent capillary endothelial cells and seal the
intercellular space (Brightman & Reese, 1969; Reese & Karnovsky, 1967). With this, the
molecular structure responsible for barrier function was identified and the barrier was
localized to the brain capillary endothelium.
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Fig. 1. Evolution of Blood-Brain Barrier Methodology/History

The History of the Blood-Brain Barrier in Epilepsy. In the 1930s, Aird and Cobb
discovered that brain uptake of “vital dyes” was increased in epileptic mice. Based on their
observation, they suggested that the brain vasculature may be a barrier between the central
nervous system (CNS) and the periphery and that altered brain vascular permeability may
be a factor contributing to epilepsy (Aird, 1939; Cobb et al., 1938). In the mid 1950s, Bercel
used diuretics in patients to increase brain uptake of antiepileptic drugs (AEDs (Bercel,
1955)). Co-administration with diuretics reduced AED doses below toxic levels in ten of ten
patients and in seven of these ten patients seizure control was improved (Bercel, 1955).
Nemeroff and Crisley made a critical discovery in 1975 when they found that glutamate is
involved in seizure induction and increases cerebrovascular permeability in rats (Nemeroff
& Crisley, 1975). Further, blood-brain barrier dysfunction was shown to go along with an
increase in blood pressure and cerebral vasodilation during seizures (Bolwig et al., 1977;
Petito et al., 1977). In 1989, Clarke and Gabrielsen demonstrated seizure-induced blood-
brain barrier leakage in humans using computed tomography (Clarke & Gabrielsen, 1989).
In 1995, Tishler et al. made the observation that mRNA of MDRI1 (ABCBI), the gene
encoding the efflux transporter P-glycoprotein (P-gp) is increased at the blood-brain barrier
of patients with drug-resistant epilepsy (Tishler et al., 1995). This was a critical finding
because P-gp acts as a “gatekeeper” that limits therapeutic drugs from crossing the blood-
brain barrier and from entering the brain (Miller et al., 2008). Research in this field initially
focused on P-gp, but other transporters such as multidrug resistance proteins (MRPs) and
breast cancer resistance protein (BCRP) are also increased in epilepsy animal models or
patients (Awasthi et al., 2005; Dombrowski et al., 2001; Sisodiya et al., 2006; Van Vliet et al.,
2005).

Today, the role of some of these transporters in epilepsy is still unclear. It has been
discussed that P-gp could be involved in seizure generation (Marchi et al., 2004) and that
multiple transporters may act in concert to limit brain uptake of a broad range of AEDs
(Lazarowski et al.,, 2007). Recent studies show that AED-metabolizing enzymes such as
cytochromes (CYP) 3A4, 2C8, and glutathione sulfotransferase (GST) p and m are also
upregulated in the brain of epileptic patients forming a metabolic barrier that contributes to
AED resistance (Ghosh et al., 2010; Shang et al., 2008; Ueda et al., 2007).

2.1 Blood-brain barrier anatomy

Numbers and Facts. The blood-brain barrier is a network of brain capillaries (microvessels).
With a diameter of 3-7 pm, brain capillaries are the smallest vessels of the vascular system
(Figure 2A) (Rodriguez-Baeza et al., 2003). The microvasculature in the human brain is
comprised of about 100 billion capillaries forming a highly branched vascular network
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(Zlokovic & Apuzzo, 1998). Due to the high capillary density in the brain, capillaries are
about 40 pm apart from each other, a distance short enough for small molecules to diffuse
within 1 second (Rodriguez-Baeza et al., 2003). This ensures that every neuron (about 100
billion in human brain) is in contact with and perfused by its own capillary, which allows
efficient nutrient and oxygen supply. Despite the huge number of 100 billion brain
capillaries, the total capillary lumen occupies only about 1% of total brain volume, or about
12-15 ml in an adult human brain of about 1,400 ml (Pardridge, 2003b). Thus, at any given
time, about 8-10% (about 10 ml) of total cerebral blood (about 150 ml) is in the lumen of
brain capillaries. Not taking the capillary lumen into account, it is estimated that the brain
capillary endothelium occupies only about 0.1% of total brain volume (~ 1-1.5 ml)
(Pardridge, 2003b). Lastly, the total length of the capillary network is about 600-650 km in an
adult human brain with a total surface area of about 20 m2. This makes the blood-brain
barrier the third largest surface area for drug exchange after intestine and lung (Pardridge,
2003a).
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Fig. 2. (A). DIC image of isolated brain capillary. (B) Neurovascular unit.

Morphology and Anatomy. Brain capillaries are the next higher level of organisation from
endothelial cells that are the smallest anatomical unit of microvessels. Brain capillary
endothelial cells are flat, thin, spindle-shaped, polarized cells. Their apical membrane faces
the blood (luminal), and their basolateral membrane faces the brain parenchyma (abluminal;
(Betz et al., 1980)). It is through the basement membrane that brain capillary endothelial cells
are in contact with pericytes, astrocytes, and neurons (Figure 2B; (Goldstein & Betz, 1983)).
This 4-cell structure is referred to as “Neurovascular Unit” and is responsible for maintaining
and regulating blood flow, and for controlling barrier function (Begley, 2004).

One fundamental characteristic of endothelial barrier function is a complex, multi-protein
structure called a tight junction, which is unique in the vascular system (Nagy et al., 1984).
Brain capillary endothelial cells also lack intercellular clefts and have low pinocytotic activity,
which limits solute exchange between blood and brain. Lastly, to meet the large energy
demand of ATP-consuming processes like metabolism and active efflux transport, brain
capillary endothelial cells possess a large number of mitochondria (Goldstein & Betz, 1983).

2.2 Blood-brain barrier physiology
Blood-brain barrier functions include CNS protection, and regulation and maintenance of
CNS homeostasis. Three components determine barrier function: 1. Tight Junctions, 2.
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Transporters and 3. Metabolising Enzymes. The following paragraphs describe these
components in more detail.

1. Tight Junctions

Tight junctions are cell-cell contacts that seal the intercellular space between adjacent
endothelial cells, thereby creating a non-fenestrated endothelium and limiting hydrophilic
molecules from paracellular diffusion (Nag, 2003). Tight junctions are multi-protein
complexes composed of transmembrane proteins like occludins, claudins, e-cadherins and
junctional adhesion molecules as well as adaptor and regulatory proteins (Matter & Balda,
2003a; Vorbrodt & Dobrogowska, 2003). Adaptor proteins include zonula occludens
proteins, cingulin, catenin and membrane-associated guanylate kinase inverted proteins that
connect junctional transmembrane proteins with cytoskeletal actin filaments (Matter &
Balda, 2003b). Regulatory proteins include G proteins, atypical protein kinase C isoforms,
and symplektin that are involved in signalling (Matter & Balda, 2003b; Wolburg & Lippoldt,
2002). Together, tight junctions guarantee a tight barrier, and thus, protection of the CNS
(Kniesel & Wolburg, 2000). However, under pathological conditions such as epilepsy, tight
junctions can be dysfunctional or disrupted, leading to barrier leakage, impaired neuronal
function, and brain damage (Huber et al., 2001).

2. Metabolic Enzymes

The concept of a “metabolic barrier” is widely accepted but little information is available on
metabolising enzymes at the blood-brain barrier. Early studies focused on phase I enzymes
in whole brain tissue but later studies differentiated between different brain cell types.
Walther et al. showed that CYP P450 enzymes are located in the inner mitochondrial
membrane of neurons and glia from rat, guinea pig, rabbit, and pig brain. This is in contrast
to liver, where most CYP isoforms are located at the endoplasmic reticulum (Walther et al.,
1986). Consistent with this, Ghersi-Egea et al. found CYP P450 protein expression in
mitochondria from rat brain tissue (Ghersi-Egea et al., 1987), and demonstrated CYP activity
in various brain regions and isolated human microvessels. They found low 1-naphthol-
UDP-glucuronosyltransferase and NADPH-CYP P450 reductase activity, and high GST and
epoxide hydrolase activity (Ghersi-Egea et al., 1993). The same group also found Cyp P450
activity in rat brain microvessels (Ghersi-Egea et al., 1994).

Dauchy et al. used isolated microvessels from resected human brain and found mRNA
expression of CYP1A1, 1B1, 2B6, 2C8, 2D6, 2E1, 2J2, 2R1, 251, and 2U1, and detected
CYP1B1 by Western blotting (Dauchy et al., 2008). Immunohistological studies by Rieder et
al. confirmed localisation of CYP1B1 in human brain capillaries (Rieder et al., 2000). In a
follow up study, Dauchy et al. showed CYP2U1 and CYP251 mRNA expression in the
human cerebral microvascular endothelial cell line hCMEC/D3 (Dauchy et al., 2009). CYPs
with low mRNA expression included CYP2R1, 2B6, 2E1, 1A1, 2D6, 2C18, 1B1, 2J2, 1A2 and
2C8. Except for CYP2C18, all CYP genes found in hCMEC/D3 cells were also detected in
isolated human brain microvessels. A novel CYP P450, Cyp4x1, was identified in 2006 by
Al-Aznizy et al. in mouse brain (Al-Anizy et al.,, 2006). Immunohistochemical staining
showed strong Cyp4x1 protein expression in neurons, choroid plexus epithelial cells, and
brain microvessel endothelial cells. In 2010, mRNA and protein expression of CYP3A4, the
most prominent enzyme involved in xenobiotic metabolism in the liver, was found by
Ghosh et al. in human brain endothelial cells (Ghosh et al., 2010).

While most blood-brain barrier enzymes have been detected at the mRNA level, protein
expression and activity of only few enzymes have been demonstrated. These include
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gamma-glutamyl transpeptidase (Beuckmann et al, 1995), alkaline phosphatase
(Beuckmann et al., 1995), aromatic L-amino acid decarboxylase (Betz et al., 1980; Matter &
Balda, 2003b), the phase I metabolising enzymes CYP1A1 (Filbrandt et al., 2004), CYP1B1
(Filbrandt et al., 2004), CYP3A4 (Ghosh et al., 2010; Ghosh et al., 2011), and Cyp4x1 (Al-
Anizy et al., 2006), NADPH-CYP P450 reductase (Chat et al., 1998; Ghersi-Egea et al., 1988;
Minn et al.,, 1991; Ravindranath et al., 1990), epoxide hydrolase (Ghersi-Egea et al., 1988;
Minn et al., 1991), and the phase II enzymes, 1-naphthol-UDP-glucuronosyltransferase
(Ghersi-Egea et al., 1988) and GSTp (Shang et al., 2008), and GSTm (Bauer et al., 2008; Shang
et al., 2008).

The presence of these enzymes in the brain microvasculature indicates the existence of a
metabolic barrier. However, more studies are needed to better define the role metabolising
enzymes play at the blood-brain barrier under physiological and pathophysiological
conditions and whether these enzymes can indeed limit AED delivery to the brain.

3. Transporters

The blood-brain barrier is an active, dynamic and selective interface that responds to signals
from both the periphery and brain. Key components of barrier function include influx and
efflux transporters that are responsible for brain homeostasis, nutrient supply, and
protection of the brain from endogenous and exogenous toxins.

Influx transporters that maintain CNS homeostasis and nutrient supply include A-and N-
system amino acid transporters (Betz et al., 1980; O'kane & Hawkins, 2003), excitatory amino
acid carriers 1, 2, and 3 (Okane & Hawkins, 2003; O'kane et al, 1999),
alanine/serine/cysteine/threonine (ASCT) transporters for neutral amino acids (Boado et al.,
2004; Tayarani et al., 1987), glucose transporters GLUT1 and GLUT3/14 (Pardridge, 1991;
Simpson et al., 2007), monocarboxylate transporters MCT1 and MCT8 (Braun et al., 2011; Ito et
al.,, 2011; Simpson et al., 2007), and the equilibrative nucleoside transporter ENT1 (Kitano et al.,
2002), as well as Na*-K+-ATPase (Betz et al., 1980). These transporters belong to the solute
carrier (SLC) superfamily. Prominent SLC transporters that have been detected at the blood-
brain barrier also include the organic anion transporter Oat3, organic anion transporting
polypeptides Oatpla4, 1bl, 1c1, 2bl, 14, and organic cation transporters OCT1, OCT2 (Ito et al.,
2011; Lin et al., 2010). Of these SLCs, Oat3, Oatps, and Octs are involved in drug transport.
However, it is currently not known if these SLC transporters can handle AEDs.

An interesting blood-brain barrier transporter is the large neutral amino acid transporter
LAT that transports the amino acids valine, leucine, isoleucine, tryptophan, and tyrosine.
LAT1 mediates brain uptake of L-DOPA that is used in Parkinson’s disease (Del Amo et al.,
2008). LAT1 has also been reported to transport the AEDs gabapentin and pregabalin across
the blood-brain barrier into the brain (Del Amo et al., 2008; Liu et al., 2008; Su et al., 1995).
Whether LATs are affected in epilepsy is unknown.

In total, 21 transporters have been detected at the protein level in brain capillaries and brain
capillary endothelial cells from various species by immunohistochemistry, Western blotting,
or quantitative LC/MS/MS (Kamiie et al., 2008; Neuwelt et al., 2011). Seven of these
transporters belong to the ABC (ATP-binding cassette) transporter family and include P-
glycoprotein (P-gp, MDR1, ABCBI), the multidrug resistance proteins 1, 2, 3, 4, and 5
(MRPs, ABCC1-5) and breast cancer resistance protein (BCRP, ABCG2). These transporters
are ATP-driven and mainly located at the luminal membrane of the brain capillary
endothelium (Mrpl and Mrp4 are also in the abluminal membrane). This “first line of
defence” protects the brain from neurotoxicants and limits CNS drugs from entering the
brain, and thus, is an obstacle for CNS pharmacotherapy.
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Together, transporters ensure proper CNS nutrient supply and mediate efflux of metabolic
wastes from the brain, thus, helping maintain CNS homeostasis. The following section
describes the role of transporters, metabolic enzymes, and barrier leakage in epilepsy.

3. Blood-brain barrier function in epilepsy

Epilepsy affects more than 60 million people worldwide. The majority of patients respond to
treatment with AEDs, but up to 40% of patients are drug-resistant (Kwan & Brodie, 2003;
Loscher & Potschka, 2005). Patients with AED resistance suffer from uncontrolled seizures,
which elevates their risk of brain damage and mortality (Sperling et al., 1999). These patients
experience a low quality of life and, despite advances in pharmacotherapy and
neurosurgery, drug-resistant epilepsy remains a major clinical problem (Devinsky, 1999).
Evidence indicates that the blood-brain barrier is altered in patients with epilepsy. Changes
in the brain capillary endothelium include upregulation of efflux transporters and metabolic
enzymes as well as barrier leakage that have been linked to AED resistance and seizure
genesis (Bauer et al., 2008; Ghosh et al., 2010; Marchi et al., 2007). The following section
describes the role of transporters, metabolic enzymes, and barrier leakage in epilepsy.

3.1 Transporters in epilepsy

One factor underlying AED resistance is, at least in part, seizure-induced over-expression of
drug efflux transporters at the blood-brain barrier (Bauer et al., 2008). Some of these
transporters, such as P-gp, Mrp2, and BCRP have been implicated with AED resistance. The
first evidence for involvement of efflux transporters in epilepsy goes back to studies by
Tishler and co-workers in 1995. These researchers observed increased P-gp mRNA in the
brain and protein expression in the capillary endothelium of patients with drug-resistant
epilepsy (Tishler et al., 1995). The findings by Tishler et al. were confirmed by other groups
(Dombrowski et al., 2001; Lazarowski et al., 1999; Sisodiya et al., 2002) and it was suggested
that this phenomenon could prevent AEDs from entering the brain and cause AED
resistance. However, studies in cell lines of non-brain endothelial origin showed that some
AEDs such as vigabatrin, gabapentin, phenobarbitone, lamotrigine, carbamazepine, and
phenytoin are not, or are only weak, P-gp substrates, questioning whether P-gp could be the
primary reason for AED resistance (Crowe & Teoh, 2006; Maines et al., 2005; Owen et al.,
2001; Weiss et al., 2003). In contrast, Cucullo et al., compared phenytoin permeation in brain
capillary endothelial cells from drug-resistant epileptic human brain tissue with that of
commercially available human brain microvascular endothelial cells (Cucullo et al., 2007).
They demonstrated that phenytoin permeation was 10-fold lower in endothelial cells from
AED-resistant patients compared to purchased human endothelial cells. Although this
comparison is flawed, inhibiting P-gp increased phenytoin permeation in the AED-resistant
cells. Moreover, recent in vivo data, including our own studies, demonstrate that P-gp does
limit AEDs from entering the brain (Brandt et al., 2006; Liu et al., 2007; Van Vliet et al., 2007).
Using a drug-resistant epilepsy rat model, Potschka et al. showed that animals not
responding to phenytoin exhibited 2-fold higher P-gp expression levels in brain capillaries
compared to animals responding to treatment (Potschka et al., 2004). van Vliet et al.
demonstrated that inhibiting P-gp counteracted phenytoin resistance, which reduced
seizure occurrence in rats (Van Vliet et al., 2006). Marchi et al. supported these findings
showing that patients with high blood-brain barrier P-gp expression had low brain levels of
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oxcarbazepine (Marchi et al., 2005). These studies demonstrate that, in drug-resistant
epilepsy, certain, but not all AEDs have restricted access to the brain due to increased blood-
brain barrier P-gp, and that modulation of P-gp can enhance brain distribution of some
AEDs such as phenytoin (Potschka & Loscher, 2001; Van Vliet et al., 2006; Van Vliet et al.,
2007).

In addition to P-gp, data indicate that BCRP plays a significant role in drug efflux at the
blood-brain barrier. Recent studies show that both transporters, P-gp and BCRP, “team up”
and work together to limit chemotherapeutic drugs from permeating across the blood-brain
barrier and penetrating into the brain (Chen et al., 2009; De Vries et al., 2007). However, little
information is available on the extent to which BCRP contributes to AED resistance and if P-
gp and BCRP work in concert in AED efflux from the brain. Some studies found no
upregulation of BCRP in human epileptogenic brain tissue and no evidence for BCRP-
mediated AED transport in vitro (Cerveny et al., 2006; Sisodiya et al., 2003), but other studies
reported upregulation of BCRP expression in the microvasculature of epileptogenic brain
tumors (Aronica et al., 2005; Vogelgesang et al., 2004) and in chronic epilepsy animal models
(Van Vliet et al., 2005). More studies are needed to unequivocally clarify the role of BCRP,
especially in conjunction with P-gp, in AED-resistant epilepsy.

Only little information is available on the multidrug resistance proteins (Mrps) in epilepsy.
van Vliet et al. used the pilocarpine status epilepticus model in rats and found by
immunohistochemistry and Western blotting that Mrpl and Mrp2 protein expression was
upregulated in astrocytes within several limbic structures including the hippocampus (Van
Vliet et al., 2005). These findings were confirmed by Hoffmann et al, who also
demonstrated Mrp2 upregulation in brain capillaries by immunohistochemistry following
pilocarpine-induced status epilepticus (Hoffmann et al., 2006). In control rats, Mrp2 was
barely detectable in the brain capillary endothelium, but in status epilepticus rats, Mrp2
staining was evident in brain capillary endothelial cells. MRP2 has also been found to be
over-expressed in sclerotic hippocampal tissue of AED-resistant patients with mesial
temporal lobe epilepsy (Aronica et al, 2004). In the same patient population, MRP1
expression was upregulated in glial endfoot processes around cerebral blood vessels.
Observations of chronic epileptic rats showed that protein levels of Mrpl and Mrp2 were
also upregulated in blood vessels and this over-expression correlated with seizure frequency
and reduced brain uptake of phenytoin (Van Vliet et al., 2005). However, phenytoin brain
uptake was enhanced by the MRP inhibitor probenecid. While upregulation of mRNA was
observed for Mrpl, 5, and 6, increased protein expression was only found for MRP1 and 2 in
isolated capillary endothelial cells from patients with drug-resistant epilepsy (Dombrowski
et al.,, 2001; Kubota et al., 2006). A time-course study revealed that 6-24 h after onset of a
pilocarpine-induced status epilepticus in rats, mRNA of P-gp, Mrpl, and Mrp5 was
decreased in hippocampus, amygdala, and the piriform cotex. This initial decrease in
mRNA levels was followed by a 24h period of normal mRNA expression and then increased
mRNA levels about 4 days after status epilepticus (Kuteykin-Teplyakov et al., 2009). These
findings are in contrast to an earlier study where P-gp mRNA levels in mouse hippocampus
were increased by 85% 3-24 h after kainic acid-induced limbic seizures, but returned to
control levels after 72 h (Rizzi et al., 2002). Treatment with AEDs for 7 days did not change
P-gp mRNA expression (Rizzi et al., 2002). In the same study, the authors also used rats with
spontaneous recurrent seizures 3 months after electrically induced status epilepticus. P-gp
mRNA levels were increased 1.8- and 5-fold in the hippocampus and entorhinal cortex,
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respectively. Thus, changes in P-gp mRNA levels occur after both acute and chronic
epileptic activity. The same authors (Rizzi et al., 2002) also used microdialysis and
demonstrated that AED brain levels were significantly reduced. While a direct connection
between blood-brain barrier P-gp levels and AED brain levels was not shown, it was
concluded that seizure-induced changes in P-gp could contribute to AED resistance in
epilepsy. Note that none of these studies provided data on transporter protein expression or
activity.

3.1.1 Transporter inhibition

The discovery that drug efflux transporters are upregulated at the blood-brain barrier in
AED-resistant patients suggested that transporter inhibition could overcome AED resistance
in epilepsy. This notion was encouraged by studies that showed enhanced brain uptake of
AEDs when co-administered with transporter inhibitors. Using verapamil and probenecid,
Potschka et al. used microdialysis and demonstrated in healthy rats that P-gp and Mrp limit
carbamazepine brain uptake (Potschka & Loscher, 2001). A follow-up study showed that
administration of the metabolic inhibitor sodium cyanide and the P-gp inhibitors verapamil
and PSC833 into the frontal cortex significantly increased extracellular fluid concentrations
of phenytoin. This indicated that P-gp limits phenytoin distribution into the brain under
physiological conditions (Potschka & Loscher, 2001). Similar observations were made with
phenobarbital, lamotrigine, and felbamate (Potschka et al., 2002). Verapamil has also been
used in case studies with AED-resistant patients (Iannetti et al., 2005; Summers et al., 2004).
For example, the status epilepticus in an 11-year old boy who was first unresponsive to
conventional AEDs disappeared after administration of verapamil i.v. (Iannetti et al., 2005).
However, this anticonvulsive response could have been due to verapamil directly blocking
neuronal calcium channels instead of inhibiting P-gp at the blood-brain barrier.

In 2005, tariquidar (XR9576), a non-competitive P-gp inhibitor was first used to block P-gp
function. (Martin et al., 1999; Mistry et al., 2001). Tariquidar has a good oral bioavailability,
long duration of action and low potential for toxic side effects, all of which make this a
favourable P-gp inhibitor. For example, van Vliet et al. demonstrated that inhibiting P-gp
with tariquidar significantly reduced seizure duration, frequency and severity, which
improved phenytoin efficacy in a rat model for temporal lobe epilepsy. This suggested that
combination of AEDs with a transporter inhibitor may be a promising therapeutic strategy
for AED-resistant patients (Van Vliet et al., 2006). The same researchers also found that P-gp
over-expression in the temporal hippocampus and parahippocampal cortex of chronic
epileptic rats reduced phenytoin levels by about 30% in these brain regions. Treating
animals with tariquidar significantly increased phenytoin brain levels in regions with over-
expressed P-gp (Van Vliet et al.,, 2007). Another group found that tariquidar restored the
anticonvulsive activity of phenobarbital in drug-resistant rats (Brandt et al., 2006). These
animal studies demonstrate that transporter inhibition increases AED blood and brain levels
and improves seizure control.

Encouraged by animal studies and case reports that suggested transporter inhibition can be
used to overcome AED resistance in epilepsy, clinical trials employing P-gp inhibitors were
initiated. Currently, two trials using carvediol and verapamil to inhibit P-gp in AED
refractory patients are ongoing (www.clinicaltrials.gov, #NCT00524134, #NCT01126307).
However, while both carvedilol and verapamil are FDA-approved and readily available,
neither drug is a highly specific nor potent P-gp inhibitor (Arboix et al., 1997; Takara et al.,
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2004). In addition, to effectively inhibit over-expressed P-gp, high inhibitor plasma
concentrations will be needed, which carries the risk of drug-drug interactions and toxic
side effects (Pennock et al., 1991). In a recent study, add-on treatment with verapamil to
improve seizure control in dogs with phenobarbital-resistant epilepsy had to be
discontinued due to detrimental effects (Jambroszyk et al., 2011). Thus, since potent and
specific inhibitors that can be safely given to patients are currently not available, transporter
inhibition does not seem to be a viable treatment option in drug-resistant epilepsy at this
point in time.

3.1.2 Modulation of transporter regulation

Targeting signalling pathways that regulate drug efflux transporters is another strategy to
overcome transporter-mediated AED resistance. The advantages of this approach are three-
fold. First, modulating transporter regulation to increase AED brain delivery may allow fine
tuning of the transporter. For example, modulating the molecular switches of a transporter
may allow turning it off for a short, controlled period of time to deliver drugs into the brain,
after which it can be turned on again. Second, preventing or blocking seizure-induced
upregulation of transporters may normalise transporter expression and functional activity,
and thus, prevent or block development of transporter-mediated AED resistance. Third,
since transporter upregulation in epilepsy has been linked to increased seizure occurrence,
prevention of transporter upregulation holds the promise of better seizure control. Thus,
mapping the signalling pathways involved in efflux transporter upregulation at the blood-
brain barrier in epilepsy can help identify new targets that may potentially be used to
overcome transporter-mediated AED resistance and improve seizure treatment.

Several signalling pathways have been identified that regulate P-gp, BCRP, and Mrp2 at the
blood-brain barrier. For BCRP, the most recent signalling mechanisms include Nrf2, NfkB,
COX-2, Pim-1 kinase, and the nuclear receptors CAR and AhR (Kalalinia et al., 2011; Singh
et al., 2010; Tan et al., 2010; Wang et al., 2010). Of those, CAR and AhR have been shown to
upregulate BCRP at the blood-brain barrier (Tan et al., 2010; Wang et al., 2010), which is the
opposite of what one would want to improve AED delivery into the brain. Whether
targeting any of the other pathways could be used as a therapeutic strategy in AED-resistant
epilepsy is unknown and remains to be determined. Mrp2 is also regulated through nuclear
receptors (PXR, FXR, CAR; (Bauer et al., 2008; Kast et al., 2002)), but the signalling that
upregulates Mrp2 in epilepsy is unknown.

Most information on transporter regulation is available for P-gp, where signalling pathways
have been shown to be present in various tissues (liver, kidney, intestine; (Ho & Piquette-
Miller, 2006; Nawa et al., 2010; Thevenod et al., 2000). They also involve various signalling
molecules: inflammatory mediators including TNF-a, ET-1, IL1-3, IL-6, NO; COX-2 (Dixit et
al., 2005; Goralski et al., 2003; Nawa et al., 2010; Patel et al., 2002; Poller et al., 2010; Sukhai et
al., 2001; Von Wedel-Parlow et al., 2009), nuclear receptors PXR, CAR, AhR, and GR (Bauer
et al., 2004; Bauer et al., 2007; Geick et al., 2001; Narang et al., 2008; Wang et al., 2011; Wang
et al., 2010), protein kinase C (Bauer et al., 2007; Chambers et al., 1990a; Chambers et al.,
1990b; Hartz et al., 2004; Miller et al., 1998; Rigor et al., 2010), and NFkB (Bauer et al., 2007;
Bentires-Alj et al., 2003; Kim et al., 2011; Liu et al., 2008; Thevenod et al., 2000; Yu et al.,
2008). These pathways have been found in several diseases including Alzheimer’s disease,
HIV, and diabetes (Hartz et al., 2010; Hayashi et al., 2006; Nawa et al., 2010).
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One pathway that involves glutamate signalling through the NMDA receptor (NMDAR)
followed by cyclooxygenase -2 (COX-2) and prostaglandin E receptor 1 (EP1) activation
seems to be critical for seizure-induced upregulation of P-gp (Figure 3, (Bankstahl et al.,
2008; Bauer et al., 2008; Pekcec et al., 2009; Zhu & Liu, 2004)). During seizures, neurons
release high amounts of the excitatory neurotransmitter glutamate, which can reach
interstitial brain concentrations of 10-100 pM for a short period of time (Ronne-Engstrom et
al.,, 1992; Ueda & Tsuru, 1995). Zhu and Liu were the first to connect glutamate with P-gp
upregulation at the blood-brain barrier. They found that glutamate increased P-gp
expression and activity in rat brain microvessel endothelial cells and suggested that
activation of the NMDAR plays a critical role in glutamate-mediated P-gp upregulation
(Zhu & Liu, 2004). Consistent with this, Bauer et al. demonstrated that exposing isolated rat
and mouse brain capillaries to glutamate increased P-gp expression and activity (Bauer et
al., 2008). It was shown that glutamate signalling through NMDAR and COX-2 upregulates
blood-brain barrier P-gp, and that COX inhibition prevented P-gp upregulation suggesting
that AED brain uptake can be enhanced by COX inhibition. Bankstahl et al. confirmed
glutamate involvement in seizure-induced P-gp over-expression and that blocking NMDAR
prevents P-gp upregulation and neuronal damage in vivo (Bankstahl et al., 2008). Another
study showed that pre-treatment with celecoxib, a specific COX-2 inhibitor, prevented
seizure-induced P-gp upregulation in rat brain capillaries (Zibell et al., 2009), and yet
another study demonstrated that pre-treatment with celecoxib for 6 days followed by
administration of phenobarbital for 16 days reduced the frequency of spontaneous recurrent
seizures and restored the anticonvulsant effect of phenobarbital in AED-resistant epileptic
rats (Schlichtiger et al., 2010). van Vliet et al. evaluated the use of the COX-2 inhibitors SC-
58236 and NS-398 in rats with recurrent spontaneous seizures. They found that 2-week
treatment with these COX-2 inhibitors prevented P-gp upregulation and enhanced
phenytoin brain uptake in chronic epileptic rats (Van Vliet et al., 2010). While these studies
are promising, COX-2 inhibitors bear the risk of severe cardio- and cerebrovascular side
effects (Mukherjee, 2001; Stollberger & Finsterer, 2003). In addition, it has been
demonstrated that COX-2 inhibition can lead to increased seizure frequency and mortality
in epileptic rats (Holtman et al., 2010). Thus, although COX-2 inhibition may reduce AED
resistance in animal models, it may not be a valid target in the clinic over the long term.
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Fig. 3. Glutamate - NMDARI - COX-2 - EP1 Signaling Pathway
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Another signalling protein involved in glutamate-mediated P-gp upregulation at the blood-
brain barrier is the EP1 receptor. EP1 is activated by prostaglandin E2, the main product of
COX-2, and was tested as potential target to prevent transporter upregulation in epilepsy.
Pekcec et al. found that EP1 is a key signalling protein in the pathway that drives P-gp
upregulation during seizures (Pekcec et al., 2009). Studies using the EP1 inhibitors SC-51089
and misoprostol showed that SC-51089 decreased seizure severity in rats when given prior
to electrical kindling, but it also prolonged seizure duration at higher doses, whereas
misoprostol decreased duration of motor seizure activity (Fischborn et al., 2010).

Together, these studies show that glutamate released during seizures mediates P-gp
upregulation through NMDAR, COX-2, and EP1 and that these signalling proteins could
potentially be used as therapeutic targets to reduce AED-resistance. Whether this pathway
also signals upregulation of other blood-brain barrier proteins is unknown at this time.

3.2 The metabolic blood-brain barrier

Xenobiotic metabolism is a 3-phase process during which low polar molecules (e.g., drugs)
are enzymatically converted to polar molecules that are then excreted from the body mostly
through bile, faeces, or urine. Most chemicals are pharmacologically or toxicologically
inactivated during metabolism, only some are transformed into active metabolites. The liver
is recognized as the main site of biotransformation, but extrahepatic tissues such as the
kidney, lung, intestine, skin, and brain also contribute to drug metabolism.

The processes involved in the biotransformation of drugs are classified into phase I
(functionalisation) and phase II (conjugation) reactions that are followed by phase III
excretion of the metabolite (Figure 4). Substrates of phase I enzymes are in general lipophilic
and undergo functionalisation reactions such as monooxygenation, dealkylation, reduction,
aromatisation, or hydrolysis. The modified molecules are substrates for phase II enzymes,
which conjugate the functional group with a polar compound, such as an amino acid,
sulphate, glutathione, or a sugar (Minn et al., 1991). In the last phase III step, functionalised
and conjugated xenobiotics are excreted from cells by efflux transporters.
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Fig. 4. Schematic of 3-phase drug metabolism and excretion

Most CNS drugs, including AEDs, have to cross the blood-brain barrier and penetrate into
the brain parenchyma to reach their target sites. En passage across the barrier and within the
brain, drugs can undergo inactivation and elimination comparable to hepatic drug
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metabolism. In the brain, the following phase I enzymes have been identified: monoamine
oxidases, CYP P450, NADPH-CYP P450 reductase, and epoxide hydrolases (Chat et al., 1998;
Dutheil et al., 2010; Ghersi-Egea et al., 1998; Ghersi-Egea et al., 1988; Ghersi-Egea et al., 1993;
Minn et al., 1991; Ravindranath et al., 1990). Phase II enzymes identified in the brain include
UDP-glucuronosyltransferase (UGT), phenol sulfotransferase (PST), and GST (Dutheil et al.,
2010; Ghersi-Egea et al., 1998; Ghersi-Egea et al., 1988; Ghersi-Egea et al., 1993; Minn et al.,
1991). Several phase I and II enzymes have been found in the brain capillary endothelium,
where they possibly form a metabolic barrier for drugs en route into the brain (Dutheil et
al., 2010; Ghersi-Egea et al., 1998; Ghersi-Egea et al., 1993; Minn et al., 1991; Stamatovic et al.,
2008). Several reports on metabolism-coupled efflux transport (phase III) suggest that
biotransformation of drugs and efflux of the metabolites are part of barrier function.
Together, the rodent and human brain, including brain microvessels forming the blood-
brain barrier, express enzymes and transporters that are part of the detoxification pathways
that affect metabolism of therapeutic drugs. In addition, AED elimination by coupling of
two important biological processes - metabolism and efflux transport - could contribute to
AED resistance and intractable epilepsy.

3.2.1 Metabolism of AEDs and the metabolic barrier in epilepsy

Phase I. CYP P450 enzymes are responsible for most phase I metabolic reactions and have
the greatest impact on the biotransformation of therapeutic drugs. CYPs form a large and
functionally diverse superfamily of enzymes that are found throughout various species
ranging from bacteria to humans. In humans, the majority of CYPs are expressed along the
inner plasma membranes of mitochondria and the endoplasmic reticulum. Although a
distinct group of CYPs (CYP11A1, 11B1, 11B2, 17A1, 21A2) is involved in steroid hormone
synthesis in humans (Hrycay & Bandiera, 2009), most CYP enzymes contribute primarily to
the elimination of endogenous and exogenous substrates through oxidation to enhance their
excretion from the body. By-in-large, CYP-mediated metabolism occurs in the liver and
contributes to the “first pass effect” of orally administered drugs. In the liver, several CYPs
exist as allelic or genetic variants and such CYP polymorphisms have been shown to
influence the plasma concentration of some AEDs. CYPs are also expressed in the kidney
and renal excretion is an important elimination route, particularly for most novel AEDs.
With regard to epilepsy it is noteworthy that many AEDs are metabolised by CYPs (Table
1). CYP2C9 and CYP2C19 are the two major enzymes involved in AED metabolism
including diazepam, phenobarbital, phenytoin, and valproic acid (Table 1; (Klotz, 2007)).
Several studies demonstrated differences in the biotransformation of these AEDs depending
on the underlying CYP genotype. For example: phenytoin metabolism depends on the allelic
composition of the gene encoding for CYP2C19 and CYP2C9. Several mutated alleles of
these genes are known. Thus, based on genotype, poor phenytoin metabolisers can be
distinguished from phenytoin hypermetabolisers and their frequency distributions vary
between different ethnic populations (Klotz, 2007).

Regarding CYPs in the brain, in vitro and in vivo functional expression of CYPs has been
detected in various CNS cell types from different species. CYP expression in distinct CNS
cell populations is variable but can be as high as in the liver (Bhagwat et al., 2000).
Importantly, it has been shown that CYPs are functionally active at the blood-brain barrier
(Dutheil et al., 2010).
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DRUG ENZYME/PATHWAY

Carbamazepine | CYP3A4, mEH1 for carbamazepinee-10, 11-epoxide
Ethosuxemid CYP3A4?, 10-20% renal

Phenobarbital CYP2C19, hydroxylation, glucuronidation, 25% renal
Phenytoin CYP2C9, CYP2C19

Valpoate CYP2(C9, glucuronidation, oxidation

Diazepam CYP2C19, CYP3A4

Felbamate 40-60% renal, hydroxylation, glucuronidation
Gabapentin Renal

Lamotrogine Glucuronidation, 8% renal

Levetirazepam | 66% renal, hydrolyse

Oxcabazepine Reduction to active metabolite that is glucuronidated
Pregabalin 98% renal

Tiagabine CYP3A4, 25% renal

Topiramate 60-80% renal, oxidation, hydrolysis, glucuronidation
Vigabatrin 60-80% renal

Zonizamide CYP3A4, N-acetylation, glucuronidation, 30% renal

Table 1. Antiepileptic drugs and their route of biotransfomation (modified from Klotz, 2007)

In the human brain, 20 CYP isoforms have been identified so far: CYP1A1, 1A2, 1B1, 2B6,
2C8, 2D6, 2E1, 3A4, 3A5, 8A1, 11A1, 11B1, 11B2, 17A1, 19A1, 21A2, 26A1, 26B1, 27B1, and
46A1 (Dutheil et al., 2010). The exact expression pattern within the CNS depends on the
particular CYP and greatly varies between different brain cells. In a recent study, CYP
mRNA expression levels were measured in a human brain microvessel cell line and in
human microvessels isolated from surgically removed brain tissue from epileptic patients or
patients with brain tumours (Dauchy et al., 2008). The authors found mRNA expression of
CYP2U1, CYP2S1, CYP2R1, CYP2B6, CYP2E1, CYP1Al, CYP2D6, CYP1B1, CYP2J2,
CYP1A2, and CYP2C8. In another study, Gosh et al. used commercially available human
microvascular cerebral endothelial cells and found mRNA expression of CYP1A1, 1B1, 2A6,
2B6 2C, 2C9, 2E1, 2J2, 3A4, 4A11, 11b, CYP3AS5, 4B1, C1, 21A, and 51A1 (Ghosh et al., 2010).
The cells that were used for this study originated from surgically resected brain specimens
of drug-resistant epileptic patients, brain specimens resected from aneurism domes,
commercially available human microvascular cerebral endothelial cells (used as control),
and from human umbilical vein endothelial cells (used as control). mRNA expression from
11 of the 16 CYPs was increased in endothelial cells from epileptic tissue compared to
microvascular cerebral endothelial cells. Although this comparison may be flawed due to
the different nature of these cells, mRNA expression in endothelial cells from drug-resistant
epileptic patients was not different compared to brain specimens resected from aneurism
domes without seizures (Ghosh et al., 2010). This result argues against a seizure effect on the
regulation of blood-brain barrier CYPs. However, it is clear from these findings that more
detailed and accurate studies with appropriate controls are needed.

Overall, expression profiles, tissue and cellular distribution, and relative expression of CYP
enzymes seem to depend on study design and the models used. Therefore, additional
research is needed to clarify the importance of individual CYPs at the blood-brain barrier
under both physiological and epileptic conditions.
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CYP Regulation in the CNS

Carbamazepine induces CYP3A4 protein and mRNA expression in human brain endothelial
cells and hepatocytes (Ghosh et al., 2010; Luo et al., 2002). But carbamazepine is metabolized
by CYP3A4 (, Table 1), and high expression of CYP3A4 protein was found in endothelial
cells isolated from surgically resected epileptic brain tissue (Ghosh et al., 2011). Neuronal
CYP3A4 expression has also been demonstrated in brain sections by immunostaining from
patients with temporal lobe epilepsy, tuberous sclerosis, or cavernous angioma, all of whom
had intractable epilepsy. In these samples, CYP3A4 was rarely co-localised with the
astrocytic marker GFAP (Ghosh et al., 2011). Carbamazepine given to cells that derived from
resected epileptic brain tissue underwent metabolism at an extent similar to what was
observed in hepatocytes. Thus, increased CYP3A4 expression and metabolic function could
be characteristic for endothelial cells in epilepsy, which could contribute to AED resistance.
As mentioned before, AEDs such as carbamazepine act as strong inducers of hepatic and
blood-brain barrier CYP expression, thereby influencing the pharmacokinetics of other
drugs. Other AEDs have also been reported to increase CYP expression at the blood-brain
barrier and exposure of primary rat brain astrocytic cultures to phenytoin increased
Cyp2c29 levels (Volk et al., 1995). Moreover, phenytoin was metabolised by the microsomal
fraction of astrocyte cultures and chronic treatment of mice with phenytoin resulted in
increased levels of phenytoin metabolites in the brain (Volk et al., 1988). These findings
support the idea of dynamic CYP regulation at the blood-brain barrier by AED exposure. In
general, regulation of CYPs at the blood-brain barrier could be independent from that in the
liver. Support for this comes from studies in alcoholics. Levels of CYP2D6 protein were
elevated in the brains of alcoholics compared to non-alcoholics (Dutheil et al., 2010; Miksys
& Tyndale, 2004). Particularly high CYP2D6 levels were detected in the putamen, globus
pallidus, and substantia nigra, but interestingly, CYP2D6 was not elevated in the liver
(Dutheil et al., 2010). Nuclear receptors that act as transcription factors control regulation of
CYPs and ABC transporters in the CNS. In the human brain, several nuclear receptors have
been detected that could control CYP regulation, including AhR, PXR, FXR, CAR, LXRS,
RXRa and B, PPAR-q, -8, and -y (Dutheil et al., 2009; Nishimura et al., 2004). For example,
Dauchy et al. showed that the AhR agonist TCDD increased mRNA expression of CYP1A1
and CYP1B1 in the human cell line hCMEC/D3 (Dauchy et al., 2008). Thus, it is possible that
nuclear receptors could be involved in the regulation of CYPs at the blood-brain barrier in
epilepsy (Dauchy et al., 2008; Dauchy et al., 2009; Ghosh et al., 2010). This idea is supported
by the fact that metabolites of CYP2]2, which is expressed in brain endothelial cells in
epilepsy, activate the nuclear receptors PPAR-a (NRICI) and PPAR-y (NR1C3). Future
studies are required to address CYP regulation at the blood-brain barrier in health, disease
(e.g., epilepsy), and during pharmacotherapy (e.g., AED treatment).

Phase II & III. Metabolism-driven efflux transport, i.e., coupling of phase II and III, has
been demonstrated in the liver. Analogous findings from studies at the blood-CSF-barrier
show coupling of metabolism and efflux transport also in the CNS. Using cultured rat
choroid plexus epithelial cells in vitro, Strazielle and Ghersi-Egea demonstrated the presence
of a metabolism-driven efflux mechanism for 1-naphthol, a cytotoxic, lipophilic model
compound (Strazielle & Ghersi-Egea, 1999). The authors showed that UGT metabolised 1-
naphthol in situ into a glucurono-conjugate (phase II) that was excreted by an efflux
transporter (phase III). In this regard, MRPs have been implicated in cellular export of
various glutathione, glucuronide, and sulfate conjugates compounds, and several other
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endogenous and xenobiotic compounds (Gerk & Vore, 2002; Jedlitschky et al., 1996; Loe et
al., 1996; Oude Elferink & Jansen, 1994). Although Mrp involvement has not directly been
shown in Strazielle and Ghersi-Egea’s study, Mrp-mediated efflux of the 1-naphthol
glucurono-conjugate seems likely as the export was sensitive to the Mrp inhibitor
probenecid. Thus, this study demonstrated the biological relevance of metabolism-driven
efflux in the brain (Strazielle & Ghersi-Egea, 1999). However, in the human brain, UGT-
mediated metabolism of 1-naphthol is less prominent compared to rat brain, and therefore,
species differences should be considered (Ghersi-Egea et al., 1993). Activity of another phase
II enzyme, GST, seems to be more relevant for human metabolism (Ghersi-Egea et al., 1993).
Metabolism-driven transport was shown for GSTm and Mrpl by Leslie et al, who
demonstrated plasma membrane co-localisation of Mrpl and GSTm in H69AR cells and
found that functional GSTnt was required for Mrpl-mediated transport (Leslie et al., 2004).
mRNA and protein expression of the GST isoform 1 has been demonstrated in isolated rat
and mouse brain capillaries, where GSTn is predominantly localized in the cytoplasm and
the luminal plasma membrane of brain capillary endothelial cells, and to a large extent, co-
localises with Mrp2 in the membrane (Bauer et al., 2008). Consistent with regulation by the
nuclear receptor PXR, GSTn protein expression increased in membranes from rat brain
capillaries exposed to PCN or dexamethasone, and in capillary membranes from rats dosed
with PCN. Immunoblotting of the capillary membrane fraction from hPXR transgenic mice
dosed with rifampin further showed enhanced GSTm expression. GSTm and Mrp2
upregulation occurred in parallel, suggesting coordinated regulation of phase-II metabolism
and phase-III efflux, i.e. Mrp2-mediated transport (Bauer et al., 2008). While these studies
provide first insight into the regulation of both GSTm and Mrp2 in brain capillaries, direct
proof of metabolism-coupled efflux transport of chemicals at the blood-brain barrier
remains to be shown. Thus, metabolism-coupled excretion of CNS drugs, such as AEDs, by
efflux transporters seems likely, but requires further studies. Such studies would have to
take into consideration the specific conditions at the human blood-brain barrier. For
example, human cerebral microvessels show absence of glucuronidation, low NADPH CYP
reductase activity, high GST activity, and pronounced epoxide hydrolase activity (Ghersi-
Egea et al., 1993). Understanding metabolising enzymes, specifically at the human blood-
brain barrier with respect to their physiological function, regulation in health and disease,
and interplay with efflux transporters will allow assessing their impact on drug delivery to
the brain, particularly in epilepsy.

3.3 Blood-brain barrier leakage in epilepsy

Seizures are accompanied by impaired blood-brain barrier integrity. This has been observed
before, during and after seizures in both experimentally induced seizures in animals as well
as in epileptic patients (Cornford & Oldendorf, 1986; Horowitz et al., 1992; Mihaly &
Bozoky, 1984; Nitsch & Klatzo, 1983; Padou et al., 1995). As a consequence, impaired blood-
brain barrier integrity causes transient barrier leakage, which allows entry of blood borne
molecules into the brain (Ndode-Ekane et al., 2010; Seiffert et al., 2004; Sokrab et al., 1989;
Van Vliet et al.,, 2007). It has been shown that seizure duration correlates with reduced
barrier function (Cornford & Oldendorf, 1986), and it has been demonstrated that increased
blood-brain barrier permeability in epilepsy is limited to anatomically specific brain regions
(Bradbury, 1979; Cornford et al., 1998; Nitsch & Klatzo, 1983; Oztas & Sandalci, 1984).
Interestingly, brain regions with increased barrier permeability are often anatomically
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congruent with the brain regions that are implicated in the development and propagation of
seizures. Consistent with this observation, extravasation of blood components into the brain
correlates with increased excitability, occurrence of seizures, and epilepsy progression
(Friedman et al., 2009; Marchi et al., 2007; Ndode-Ekane et al., 2010; Oby & Janigro, 2006;
Seiffert et al., 2004; Tomkins et al., 2008; Van Vliet et al., 2007).

Cause of Blood-Brain Barrier Leakage by Seizures. Studies conducted over the last 3
decades indicate that possibly 3 mechanisms could be involved in causing blood-brain
barrier leakage in epilepsy: blood pressure, pinocytosis, and seizure-induced inflammation.

Blood Pressure

The first studies conducted in the 1970s showed that arterial blood pressure is involved in
seizure-associated blood-brain barrier leakage (Nitsch & Klatzo, 1983). Several studies
unequivocally demonstrated that hypertension has detrimental effects on blood-brain
barrier integrity and contributes to barrier leakage (Cornford & Oldendorf, 1986; Lee &
Olszewski, 1961; Petito et al., 1977; Westergaard, 1980). Johansson summarized three factors
responsible for increased blood-brain barrier permeability: (1) maximal arterial blood
pressure, (2) duration of maximal arterial blood pressure, and (3) total increase in blood
pressure (Johansson, 1981). The detailed mechanism through which increased blood
pressure contributes to barrier leakage is unclear, but a working hypothesis postulates the
following (Petito et al, 1977): Neuronal hyperactivity (seizures) leads to increased
metabolism, and to an increased nutrient and oxygen demand in the involved brain regions.
In turn, cerebral blood flow rises and large cerebral arteries dilate, which leads to increased
blood pressure in brain capillaries, small arteries and veins (Ndode-Ekane et al., 2010), and
triggers barrier leakage. Consistent with this, extravasation of blood albumin into the brain
was found specifically in regions with more EEG spiking activity in humans (Cornford et al.,
1998). However, the duration of increased blood pressure is critical and determines the
severity of barrier leakage. Thus, more severe seizures that are followed by prolonged blood
pressure elevations result in a higher increase in barrier permeability (Oztas & Kaya, 1991;
Oztas & Sandalci, 1984). This is also supported by studies where both increased arterial
blood pressure and subsequently induced barrier leakage were prevented by cervical
cordotomy (Schaefer et al., 1975; Westergaard et al., 1978).

Pinocytosis

It was hypothesized that pinocytosis is involved in transport across the capillary
endothelium, thus, affecting barrier permeability (Palade, 1961). The pinocytosis rate at the
blood-brain barrier is low, which contributes to a tight barrier endothelium. However, Petito
et al. observed that seizure-induced blood-brain barrier leakage correlates with increased
micropinocytosis (Petito et al., 1977). In an elegant study using intravenous HRP injections
in adult male rats with seizures, the authors made two important findings: (1) Brain
capillary vesicles from animals that suffered seizures did contain HRP compared to vesicles
from control animals that did not contain HRP; (2) the number of HRP-containing vesicles
was higher directly after seizures (within 30 sec of last seizure (Petito et al., 1977)). From
these observations the authors concluded that an increased micropinocytosis rate during
and shortly after seizures increases blood-brain barrier permeability and counteracts barrier
function. Nitsch and Hubauer confirmed these studies and showed in kainic acid-injected
rats that blood-brain barrier opening was due to increased transendothelial pinocytosis,
while tight junctions stayed intact (Nitsch & Hubauer, 1986).
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Seizure-induced Inflammation

Another factor causing barrier leakage in epilepsy is seizure-induced inflammation that
could be enhanced by extravasation of blood-borne components into the brain. It has been
shown that blood-brain barrier permeability is increased by inflammatory mediators,
including histamine, substance P, endothelin-1, bradykinin, VEGF, TGFf, IL1£5, TNFa, INFy,
PGE2, PGF2a, chemokines, free radicals, and other factors such as metalloproteinases,
thrombin, amyloid-88, intracellular calcium, and leukocytes that directly interact with
endothelial cells (Stamatovic et al., 2008). Only limited information is available on how these
factors alter the blood-brain barrier but some, e.g., IL188 and chemokines, seem to exclusively
affect paracellular permeability (Stamatovic et al., 2008). It is currently unknown if secretion
of these factors is a direct consequence of epileptic seizures. In addition, depending on
epilepsy aetiopathology, the composition of the inflammatory “cocktail” and the
contribution of individual inflammatory mediators to blood-brain barrier damage could
vary significantly. The effect of inflammation on barrier permeability is context-dependent,
complex and not well understood. It likely depends on the model, dose, time and location of
the inflammatory mediators involved.

One hypothesis that could explain some of the phenomena observed at the blood-brain
barrier in epilepsy is that seizure-released glutamate activates signalling reducing barrier
integrity and increasing permeability. Glutamate release occurs during seizures at sites in
the brain with excessive neuronal activity. On the one hand, high glutamate levels are
cytotoxic, which contributes to brain damage. On the other hand, subtoxic glutamate levels
trigger molecular processes such as local release and activation of matrix-degrading
enzymes that breach integrity (Michaluk & Kaczmarek, 2007; Nishijima et al., 2010). It is
possible that glutamate-initiated signalling and inflammatory mediators cause barrier
leakage and breakdown in epilepsy. Such events would allow extravasation of blood-borne
compounds. Whether this scenario is part of seizures remains to be shown.

Consequences of Blood-Brain Barrier Leakage in Epilepsy. Epilepsy is often a consequence
of a prior brain insult (e.g., traumatic brain injury, stroke) and seizures are a symptom of an
underlying brain disorder (e.g., brain tumour, Alzheimer’s disease, brain inflammation;
(Marchi et al., 2006; Salazar et al., 1985; Tomkins et al., 2011). Although the factors that are
involved in the development of epilepsy remain unclear, impaired barrier function is
common after an initial brain insult and likely contributes to epilepsy pathology. This
particular topic has recently attracted major interest in the epileptology field.

It has been shown in patients that brain injury, post-ischemic or vascular inflammation often
cause seizures and barrier leakage (Stamatovic et al., 2008; Tomkins et al., 2011; Tomkins et
al., 2008). The blood-brain barrier is also impaired in epileptic patients and in seizure animal
models, and consequently, it has been postulated that barrier leakage is involved in epilepsy
aetiology (Friedman et al., 2009; Marchi et al., 2007; Ndode-Ekane et al., 2010; Oby & Janigro,
2006; Seiffert et al., 2004; Tomkins et al., 2011; Tomkins et al., 2008; Van Vliet et al., 2007). In
addition, it has been shown that osmotic barrier opening causes seizures (Oby & Janigro,
2006). However, not all implications of barrier opening have been studied. It is known that
intra-arterial injection of hyperosmotic mannitol in patients and rodents results in EEG
changes and induces seizures (Fieschi et al., 1980). In a recent study, Marchi et al (2007)
observed seizures in patients undergoing osmotic barrier opening for delivering
chemotherapeutics to treat brain lymphomas. In 25% of patients, seizure onset occurred
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immediately after barrier opening. Using a pig model, the authors demonstrated that
seizure occurrence correlated with barrier opening and was neither attributed to the existing
brain lymphoma nor to chemotherapy (Marchi et al., 2007).

The molecular and cellular events that are triggered by barrier opening and that result in
seizures and neuronal hyperactivity are a matter of research. Rigau et al. (2007)
demonstrated loss of functional tight junctions and immunoglobulin leakage into the brain
in surgically resected hippopcampal tissue from AED-resistant epilepsy patients (Rigau et
al., 2007). Additional evidence from rodents and resected epileptogenic human brain tissue
shows that extravasation of albumin into the brain triggers epileptogenesis (Friedman et al.,
2009; Ivens et al., 2010). It was shown that astrocytes incorporated extravasated albumin,
which induced proepileptogenic transformations, including reduced expression of
potassium and aquaporin channels and gap junction proteins, impairment of astrocytic
glutamate metabolism, and increased release of pro-inflammatory mediators (Friedman et
al., 2009). All these changes had detrimental effects on seizure threshold and susceptibility
(Friedman et al., 2009). One could postulate that seizures or other factors that induce barrier
leakage trigger albumin extravasation with subsequent astrocytic transformation eventually
causing seizures. Such a scenario implies a pernicious feedback loop where seizures drive
barrier leakage leading to more seizures. Although this hypothesis is a matter of discussion,
many epileptologists are convinced that ‘seizures beget seizures’ and that epilepsy has a
progressive nature (Hauser & Lee, 2002). In this regard, alterations of the blood-brain barrier
and extravasation of blood-borne compounds could be a critical part of epilepsy pathology
that could potentially be a target for new therapies.

4. Conclusions

Research over the last century demonstrated a key role of the blood-brain barrier in the
development of epilepsy and AED resistance. Despite the advances that have been made,
what we currently know about AED resistance is mostly limited to descriptive observations
rather than understanding of the mechanisms underlying the disease. We know that the
blood-brain barrier is altered in epilepsy including changes in transporters, metabolic
enzymes, and tight junctions. We also know that transporters, enzymes and tight junctions
are affected by and/or contribute to epilepsy pathology. Yet, whether each of these
molecular players is part of a cause-effect jigsaw puzzle and how each of the pieces fit
together is unclear. Thus, AED resistance in epilepsy remains an unsolved clinical problem.
To solve this problem future studies will have to address the mechanism of AED resistance
at the molecular level taking all aspects into account in a “big picture approach” rather than
focusing on one single piece of the puzzle. The stimuli of blood-brain barrier transporter,
enzyme and tight junction regulation in epilepsy will have to be identified and the detailed
chain of signalling events will have to be unravelled. Such information will provide novel
targets and therapeutic strategies that hold the promise to advance this research field and
eventually improve treatment of patients with AED-resistant epilepsy.

5. Acknowledgments

We thank Britt Johnson for editorial assistance. This work was supported by UMN startup
funds for AM.S.H. and B.B.



The Blood-Brain Barrier in Epilepsy 41

6. References

Aird, R.B. (1939). Mode of action of brilliant vital red in epilepsy. Archives of Neurology and
Psychiatry Vol.42, pp.700-723

Al-Anizy, M. et al. (2006). Cytochrome P450 Cyp4x1 is a major P450 protein in mouse brain.
FEBS ], Vol.273, No.5, (Mar), pp.936-947, ISSN 1742-464X

Arboix, M. et al. (1997). Multidrug resistance-reversing agents increase vinblastine
distribution in normal tissues expressing the P-glycoprotein but do not enhance
drug penetration in brain and testis. Journal of Pharmacology and Experimental
Therapeutics, Vol.281, No.3, (Jun), pp.1226-1230, ISSN 0022-3565

Aronica, E. et al. (2004). Expression and cellular distribution of multidrug resistance-related
proteins in the hippocampus of patients with mesial temporal lobe epilepsy.
Epilepsia, Vol.45, No.5, (May), pp.441-451, ISSN 0013-9580

Aronica, E. et al. (2005). Localization of breast cancer resistance protein (BCRP) in
microvessel endothelium of human control and epileptic brain. Epilepsia, Vol.46,
No.6, (Jun), pp.849-857, ISSN 0013-9580

Awasthi, S. et al. (2005). RLIP76, a non-ABC transporter, and drug resistance in epilepsy.
BMC Neurosci, Vol.6, pp.61, ISSN 1471-2202

Bankstahl, J.P. et al. (2008). Glutamate is critically involved in seizure-induced
overexpression of P-glycoprotein in the brain. Neuropharmacology, Vol.54, No.6,
(May), pp.1006-1016, ISSN 0028-3908

Bauer, B. et al. (2004). Pregnane X receptor up-regulation of P-glycoprotein expression and
transport function at the blood-brain barrier. Molecular Pharmacology, Vol.66, No.3,
(Sep), pp.413-419, ISSN 0026-895X

Bauer, B. et al. (2007). Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein
expression and transport activity at the blood-brain barrier. Molecular Pharmacology,
Vol.71, No.3, (Mar), pp.667-675, ISSN 0026-895X

Bauer, B. et al. (2008). Seizure-induced up-regulation of P-glycoprotein at the blood-brain
barrier through glutamate and cyclooxygenase-2 signaling. Molecular Pharmacology,
Vol.73, No.5, (May), pp.1444-1453, ISSN 1521-0111)

Begley, D.J. (2004). Delivery of therapeutic agents to the central nervous system: the
problems and the possibilities. Pharmacology and Therapeutics, Vol.104, No.1, (Oct),
pp.29-45, ISSN 0163-7258

Bentires-Alj, M. et al. (2003). NF-kappaB transcription factor induces drug resistance
through MDR1 expression in cancer cells. Oncogene, Vol.22, No.1, (Jan 9), pp.90-97,
ISSN 0950-9232

Bercel, N.A. (1955). Diuretics in therapy of epilepsy; their use for the potentiation of
anticonvulsant drugs. California Medicine, Vol.82, No.2, (Feb), pp.107-110, ISSN
0008-1264

Betz, A.L. et al. (1980). Polarity of the blood-brain barrier: distribution of enzymes between
the luminal and antiluminal membranes of brain capillary endothelial cells. Brain
Research, Vol.192, No.1, (Jun 16), pp.17-28

Beuckmann, C. et al. (1995). Induction of the blood/brain-barrier-associated enzyme
alkaline phosphatase in endothelial cells from cerebral capillaries is mediated via
cAMP. European Journal of Biochemistry, Vol.229, No.3, (May 1), pp.641-644, ISSN
0014-2956



42 Clinical and Genetic Aspects of Epilepsy

Bhagwat, S.V. et al. (2000). Multiple forms of cytochrome P450 and associated
monooxygenase activities in human brain mitochondria. Biochemical Pharmacology,
Vol.59, No.5, (Mar 1), pp.573-582, ISSN 0006-2952

Boado, RJ. et al. (2004). Developmental regulation of the rabbit blood-brain barrier LAT1
large neutral amino acid transporter mRNA and protein. Pediatric Research, Vol.55,
No.4, (Apr), pp.557-560, ISSN 0031-3998

Bolwig, T.G. et al. (1977). Acute hypertension causing blood-brain barrier breakdown during
epileptic seizures. Acta Neurologica Scandinavica, Vol.56, No.4, (Oct), pp.335-342,
ISSN 0001-6314

Bradbury, M.W.B. (1979) The Concept of a Blood-Brain Barrier. John Wiley, Chichester.

Brandt, C. et al. (2006). The multidrug transporter hypothesis of drug resistance in epilepsy:
Proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiology of Disease,
Vol.24, No.1, (Oct), pp.202-211, ISSN 0969-9961

Braun, D. et al. (2011). Developmental and cell type-specific expression of thyroid hormone
transporters in the mouse brain and in primary brain cells. Glia, Vol.59, No.3, (Mar),
pp.463-471, ISSN 1098-1136

Brightman, M.W. & Reese, T.S. (1969). Junctions between intimately apposed cell
membranes in the vertebrate brain. Journal of Cell Biology, Vol.40, No.3, (Mar),
pp.648-677

Cerveny, L. et al. (2006). Lack of interactions between breast cancer resistance protein
(berp/abcg?) and selected antiepileptic agents. Epilepsia, Vol.47, No.3, (Mar),
pp.461-468, ISSN 0013-9580

Chambers, T.C. et al. (1990a). Correlation of protein kinase C translocation, P-glycoprotein
phosphorylation and reduced drug accumulation in multidrug resistant human KB
cells. Biochemical and Biophysical Research Communications, Vol.169, No.1, (May 31),
pp.253-259, ISSN 0006-291X

Chambers, T.C. et al. (1990b). Protein kinase C phosphorylates P-glycoprotein in multidrug
resistant human KB carcinoma cells. Journal of Biological Chemistry, Vol.265, No.13,
(May 5), pp.7679-7686, ISSN 0021-9258

Chat, M. et al. (1998). Drug metabolizing enzyme activities and superoxide formation in
primary and immortalized rat brain endothelial cells. Life Sciences, Vol.62, No.2,
pp-151-163, ISSN 0024-3205

Chen, Y. et al. (2009). P-glycoprotein and breast cancer resistance protein influence brain
distribution of dasatinib. Journal of Pharmacology and Experimental Therapeutics,
Vol.330, No.3, (Sep), pp.956-963, ISSN 1521-0103

Clarke, H.B. & Gabrielsen, T.O. (1989). Seizure induced disruption of blood-brain barrier
demonstrated by CT. Journal of Computer Assisted Tomography, Vol.13, No.5, (Sep-
Oct), pp.889-892, ISSN 0363-8715

Cobb, S. et al. (1938). Anticonvulsive action of vital dyes. Archives of Neurology and
Psychiatry, Vol.40, pp.1156-1177

Cornford, EM. et al. (1998). Interictal seizure resections show two configurations of
endothelial Glutl glucose transporter in the human blood-brain barrier. Journal of
Cerebral Blood Flow and Metabolism, Vol.18, No.1, (Jan), pp.26-42, ISSN 0271-678X

Cornford, E.M. & Oldendorf, W.H. (1986). Epilepsy and the blood-brain barrier. Advances in
Neurology, Vol.44, pp.787-812, ISSN 0091-3952



The Blood-Brain Barrier in Epilepsy 43

Crowe, A. & Teoh, Y.K. (2006). Limited P-glycoprotein mediated efflux for anti-epileptic
drugs. Journal of Drug Targeting, Vol.14, No.5, (Jun), pp.291-300, ISSN 1061-186X

Cucullo, L. et al. (2007). Development of a humanized in vitro blood-brain barrier model to
screen for brain penetration of antiepileptic drugs. Epilepsia, Vol.48, No.3, (Mar),
pp.505-516, ISSN 0013-9580

Dauchy, S. et al. (2008). ABC transporters, cytochromes P450 and their main transcription
factors: expression at the human blood-brain barrier. Journal of Neurochemistry,
Vol.107, No.6, (Dec), pp.1518-1528, ISSN 1471-4159

Dauchy, S. et al. (2009). Expression and transcriptional regulation of ABC transporters and
cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells.
Biochemical Pharmacology, Vol.77, No.5, (Mar 1), pp.897-909, ISSN 1873-2968

De Vries, N.A. et al. (2007). P-glycoprotein and breast cancer resistance protein: two
dominant transporters working together in limiting the brain penetration of
topotecan. Clinical Cancer Research, Vol.13, No.21, (Nov 1), pp.6440-6449, ISSN 1078-
0432

Del Amo, EM. et al. (2008). Pharmacokinetic role of L-type amino acid transporters LAT1
and LAT2. European Journal of Pharmaceutical Sciences, Vol.35, No.3, (Oct 2), pp.161-
174, ISSN 0928-0987

Devinsky, O. (1999). Patients with refractory seizures. New England Journal of Medicine,
Vol.340, No.20, (May 20), pp.1565-1570, ISSN 0028-4793

Dixit, S.G. et al. (2005). Nitric oxide mediates increased P-glycoprotein activity in interferon-
{gamma}-stimulated human intestinal cells. Am | Physiol Gastrointest Liver Physiol,
Vol.288, No.3, (Mar), pp.G533-540, ISSN 0193-1857

Dombrowski, S.M. et al. (2001). Overexpression of multiple drug resistance genes in
endothelial cells from patients with refractory epilepsy. Epilepsia, Vol.42, No.12,
(Dec), pp.1501-1506, ISSN 0013-9580

Dutheil, F. et al. (2009). Xenobiotic-metabolizing enzymes and transporters in the normal
human brain: regional and cellular mapping as a basis for putative roles in cerebral
function. Drug Metabolism and Disposition: The Biological Fate of Chemicals, Vol.37,
No.7, (Jul), pp.1528-1538, ISSN 1521-009X

Dutheil, F. et al. (2010). ABC transporters and cytochromes P450 in the human central
nervous system: influence on brain pharmacokinetics and contribution to
neurodegenerative disorders. Expert Opin Drug Metab Toxicol, Vol.6, No.10, (Oct),
pp-1161-1174, ISSN 1744-7607

Ehrlich, P. (1885). Das Sauerstoff-Bediirfniss des Organismus. Eine farbenanalytische Studie.
Verlag von August Hischwald, pp.1-167

Fieschi, C. et al. (1980). Effects on EEG of the osmotic opening of the blood-brain barrier in
rats. Life Sciences, Vol.27, No.3, (Jul 21), pp.239-243, ISSN 0024-3205

Filbrandt, C.R. et al. (2004). Presence and functional activity of the aryl hydrocarbon
receptor in isolated murine cerebral vascular endothelial cells and astrocytes.
Neurotoxicology, Vol.25, No.4, (Jun), pp.605-616, ISSN 0161-813X

Fischborn, S.V. et al. (2010). Targeting the prostaglandin E2 EP1 receptor and
cyclooxygenase-2 in the amygdala kindling model in mice. Epilepsy Research, Vol.91,
No.1, (Sep), pp.57-65, ISSN 1872-6844



44 Clinical and Genetic Aspects of Epilepsy

Friedman, A. et al. (2009). Blood-brain barrier breakdown-inducing astrocytic
transformation: novel targets for the prevention of epilepsy. Epilepsy Research,
Vol.85, No.2-3, (Aug), pp.142-149, ISSN 1872-6844

Geick, A. et al. (2001). Nuclear receptor response elements mediate induction of intestinal
MDR1 by rifampin. Journal of Biological Chemistry, Vol.276, No.18, (May 4),
pp-14581-14587, ISSN 0021-9258

Gerk, PM. & Vore, M. (2002). Regulation of expression of the multidrug resistance-
associated protein 2 (MRP2) and its role in drug disposition. Journal of Pharmacology
and Experimental Therapeutics, Vol.302, No.2, (Aug), pp.407-415, ISSN 0022-3565

Ghersi-Egea, ].F. et al. (1994). Localization of drug-metabolizing enzyme activities to blood-
brain interfaces and circumventricular organs. Journal of Neurochemistry, Vol.62,
No.3, (Mar), pp.1089-1096, ISSN 0022-3042

Ghersi-Egea, J.F. et al. (1998). Electronic spin resonance detection of superoxide and
hydroxyl radicals during the reductive metabolism of drugs by rat brain
preparations and isolated cerebral microvessels. Free Radical Biology and Medicine,
Vol.24, No.7-8, (May), pp.1074-1081, ISSN 0891-5849

Ghersi-Egea, J.F. et al. (1988). A new aspect of the protective functions of the blood-brain
barrier: activities of four drug-metabolizing enzymes in isolated rat brain
microvessels. Life Sciences, Vol.42, No.24, pp.2515-2523, ISSN 0024-3205

Ghersi-Egea, J.F. et al. (1993). Subcellular localization of cytochrome P450, and activities of
several enzymes responsible for drug metabolism in the human brain. Biochemical
Pharmacology, Vol.45, No.3, (Feb 9), pp.647-658, ISSN 0006-2952

Ghersi-Egea, J.F. et al. (1987). Quantitative measurement of cerebral cytochrome P-450 by
second derivative spectrophotometry. Journal of Neuroscience Methods, Vol.20, No.3,
(Jul), pp.261-269, ISSN 0165-0270

Ghosh, C. et al. (2010). Pattern of P450 expression at the human blood-brain barrier: roles of
epileptic condition and laminar flow. Epilepsia, Vol.51, No.8, (Aug), pp.1408-1417,
ISSN 1528-1167

Ghosh, C. et al. (2011). Cellular localization and functional significance of CYP3A4 in the
human epileptic brain. Epilepsia, Vol.52, No.3, (Mar), pp.562-571, ISSN 1528-1167

Goldmann, E.E. (1909). Die &dussere und innere Sekretion des gesunden und kranken
Organismus im Lichte der "vitalen Farbung". Beitrige zur klinischen Chirurgie,
Vol.64, pp.192-265

Goldmann, E.E. (1913) Vitalfirbung am Zentralnervensystem. Beitrag zur Physio-Pathologie des
Plexus Chorioideus und der Hirnhiute. Verlag der koniglichen Akademie der
Wissenschaften, Berlin.

Goldstein, GW. & Betz, A.L. (1983). Recent advances in understanding brain capillary
function. Annals of Neurology, Vol.14, No.4, (Oct), pp.389-395

Goralski, K.B. et al. (2003). Downregulation of mdrla expression in the brain and liver
during CNS inflammation alters the in vivo disposition of digoxin. British Journal of
Pharmacology, Vol.139, No.1, (May), pp.35-48, ISSN 0007-1188

Hartz, A.M. et al. (2004). Rapid regulation of P-glycoprotein at the blood-brain barrier by
endothelin-1. Molecular Pharmacology, Vol.66, No.3, (Sep), pp.387-394, ISSN 0026-
895X



The Blood-Brain Barrier in Epilepsy 45

Hartz, AM. et al. (2010). Restoring blood-brain barrier P-glycoprotein reduces brain
amyloid-beta in a mouse model of Alzheimer's disease. Molecular Pharmacology,
Vol.77, No.5, (May), pp.715-723, ISSN 1521-0111

Hauser, W.A. & Lee, J.R. (2002). Do seizures beget seizures? Progress in Brain Research,
Vol.135, pp.215-219, ISSN 0079-6123

Hayashi, K. et al. (2006). HIV-TAT protein upregulates expression of multidrug resistance
protein 1 in the blood-brain barrier. Journal of Cerebral Blood Flow and Metabolism,
Vol.26, No.8, (Aug), pp.1052-1065, ISSN 0271-678X

Ho, E.A. & Piquette-Miller, M. (2006). Regulation of multidrug resistance by pro-
inflammatory cytokines. Curr Cancer Drug Targets, Vol.6, No.4, (Jun), pp.295-311,
ISSN 1568-0096

Hoffmann, K. et al. (2006). Expression of the multidrug transporter MRP2 in the blood-brain
barrier after pilocarpine-induced seizures in rats. Epilepsy Research, Vol.69, No.1,
(Apr), pp.1-14, ISSN 0920-1211

Holtman, L. et al. (2010). Cox-2 inhibition can lead to adverse effects in a rat model for
temporal lobe epilepsy. Epilepsy Research, Vol.91, No.1, (Sep), pp.49-56, ISSN 1872-
6844

Horowitz, SW. et al. (1992). Complex partial seizure-induced transient MR enhancement.
Journal of Computer Assisted Tomography, Vol.16, No.5, (Sep-Oct), pp.814-816, ISSN
0363-8715

Hrycay, E.G. & Bandiera, SM. (2009). Expression, function and regulation of mouse
cytochrome P450 enzymes: comparison with human P450 enzymes. Curr Drug
Metab, Vol.10, No.10, (Dec), pp.1151-1183, ISSN 1875-5453

Huber, ].D. et al. (2001). Molecular physiology and pathophysiology of tight junctions in the
blood-brain barrier. Trends in Neurosciences, Vol.24, No.12, (Dec), pp.719-725, ISSN

Iannetti, P. et al. (2005). Calcium-channel blocker verapamil administration in prolonged
and refractory status epilepticus. Epilepsia, Vol.46, No.6, (Jun), pp.967-969, ISSN
0013-9580

Ito, K. et al. (2011). Quantitative membrane protein expression at the blood-brain barrier of
adult and younger cynomolgus monkeys. Journal of Pharmaceutical Sciences, (Jan 19),
pp., ISSN 1520-6017

Ivens, S. et al. (2010). Blood-brain barrier breakdown as a novel mechanism underlying
cerebral hyperperfusion syndrome. Journal of Neurology, Vol.257, No.4, (Apr),
pp.615-620, ISSN 1432-1459

Jambroszyk, M. et al. (2011). Add-on treatment with verapamil in pharmacoresistant canine
epilepsy. Epilepsia, Vol.52, No.2, (Feb), pp.284-291, ISSN 1528-1167

Jedlitschky, G. et al. (1996). Transport of glutathione, glucuronate, and sulfate conjugates by
the MRP gene-encoded conjugate export pump. Cancer Research, Vol.56, No.5, (Mar
1), pp.988-994, ISSN 0008-5472

Johansson, B.B. (1981). Indomethacin and cerebrovascular permeability to albumin in acute
hypertension and cerebral embolism in the rat. Experimental Brain Research, Vol.42,
No.3-4, pp.331-336, ISSN 0014-4819

Kalalinia, F. et al. (2011). Potential role of cyclooxygenase-2 on the regulation of the drug
efflux transporter ABCG2 in breast cancer cell lines. Journal of Cancer Research and
Clinical Oncology, Vol.137, No.2, (Feb), pp.321-330, ISSN 1432-1335



46 Clinical and Genetic Aspects of Epilepsy

Kamiie, . et al. (2008). Quantitative atlas of membrane transporter proteins: development
and application of a highly sensitive simultaneous LC/MS/MS method combined
with novel in-silico peptide selection criteria. Pharmaceutical Research, Vol.25, No.6,
(Jun), pp.1469-1483, ISSN 0724-8741

Kast, H.R. et al. (2002). Regulation of multidrug resistance-associated protein 2 (ABCC2) by
the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and
constitutive androstane receptor. Journal of Biological Chemistry, Vol.277, No.4, (Jan
25), pp.2908-2915, ISSN 0021-9258

Kim, H.G. et al. (2011). Metformin inhibits P-glycoprotein expression via the NF-kappaB
pathway and CRE transcriptional activity through AMPK activation. British Journal
of Pharmacology, Vol.162, No.5, (Mar), pp.1096-1108, ISSN 1476-5381

Kitano, T. et al. (2002). Polarized glucose transporters and mRNA expression properties in
newly developed rat syncytiotrophoblast cell lines, TR-TBTs. Journal of Cellular
Physiology, Vol.193, No.2, (Nov), pp.208-218, ISSN 0021-9541

Klotz, U. (2007). The role of pharmacogenetics in the metabolism of antiepileptic drugs:
pharmacokinetic and therapeutic implications. Clinical Pharmacokinetics, Vol.46,
No.4, pp.271-279, ISSN 0312-5963

Kniesel, U. & Wolburg, H. (2000). Tight junctions of the blood-brain barrier. Cellular and
Molecular Neurobiology, Vol.20, No.1, (Feb), pp.57-76

Kubota, H. et al. (2006). Distribution and functional activity of P-glycoprotein and multidrug
resistance-associated proteins in human brain microvascular endothelial cells in
hippocampal sclerosis. Epilepsy Research, Vol.68, No.3, (Mar), pp.213-228, ISSN
0920-1211

Kuteykin-Teplyakov, K. et al. (2009). Complex time-dependent alterations in the brain
expression of different drug efflux transporter genes after status epilepticus.
Epilepsia, Vol.50, No.4, (Apr), pp.887-897, ISSN 1528-1167

Kwan, P. & Brodie, M.J. (2003). Clinical trials of antiepileptic medications in newly
diagnosed patients with epilepsy. Neurology, Vol.60, No.11 Suppl 4, (Jun 10), pp.S2-
12, ISSN 1526-632X

Lazarowski, A. et al. (2007). ABC transporters during epilepsy and mechanisms underlying
multidrug resistance in refractory epilepsy. Epilepsia, Vol.48 Suppl 5, pp.140-149,
ISSN 0013-9580

Lazarowski, A. et al. (1999). Tuberous sclerosis associated with MDR1 gene expression and
drug-resistant epilepsy. Pediatric Neurology, Vol.21, No.4, (Oct), pp.731-734, ISSN
0887-8994 (Print)

Lee, J.C. & Olszewski, J. (1961). Increased cerebrovascular permeability after repeated
electroshocks. Neurology, Vol.11, (Jun), pp.515-519, ISSN 0028-3878

Leslie, EMM. et al. (2004). Arsenic transport by the human multidrug resistance protein 1
(MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required. Journal of
Biological Chemistry, Vol.279, No.31, (Jul 30), pp.32700-32708, ISSN 0021-9258

Lewandowsky, M. (1900). Zur Lehre von der Cerebrospinalfliissigkeit. Zeitschrift fur
Klinische Medizin, Vol.40, pp.480-494

Lin, CJ. et al. (2010). Cellular localization of the organic cation transporters, OCT1 and
OCT2, in brain microvessel endothelial cells and its implication for MPTP transport



The Blood-Brain Barrier in Epilepsy 47

across the blood-brain barrier and MPTP-induced dopaminergic toxicity in rodents.
Journal of Neurochemistry, Vol.114, No.3, (Aug), pp.717-727, ISSN 1471-4159

Liu, X. et al. (2008). Progress in brain penetration evaluation in drug discovery and
development. Journal of Pharmacology and Experimental Therapeutics, Vol.325, No.2,
(May), pp.349-356, ISSN 1521-0103

Liu, X. et al. (2007). Increased P-glycoprotein expression and decreased phenobarbital
distribution in the brain of pentylenetetrazole-kindled rats. Neuropharmacology,
Vol.53, No.5, (Oct), pp.657-663, ISSN 0028-3908

Loe, D.W. et al. (1996). Multidrug resistance protein (MRP)-mediated transport of
leukotriene C4 and chemotherapeutic agents in membrane vesicles. Demonstration
of glutathione-dependent vincristine transport. Journal of Biological Chemistry,
Vol.271, No.16, (Apr 19), pp.9675-9682, ISSN 0021-9258

Loscher, W. & Potschka, H. (2005). Drug resistance in brain diseases and the role of drug
efflux transporters. Nat Rev Neurosci, Vol.6, No.8, (Aug), pp.591-602, ISSN 1471-
003X

Luo, G. et al. (2002). CYP3A4 induction by drugs: correlation between a pregnane X receptor
reporter gene assay and CYP3A4 expression in human hepatocytes. Drug
Metabolism and Disposition: The Biological Fate of Chemicals, Vol.30, No.7, (Jul),
pp.795-804, ISSN 0090-9556

Maines, L.W. et al. (2005). Evaluation of the role of P-glycoprotein in the uptake of
paroxetine, clozapine, phenytoin and carbamazapine by bovine retinal endothelial
cells. Neuropharmacology, Vol.49, No.5, (Oct), pp.610-617, ISSN 0028-3908

Marchi, N. et al. (2007). Seizure-promoting effect of blood-brain barrier disruption. Epilepsia,
Vol.48, No.4, (Apr), pp.732-742, ISSN 0013-9580

Marchi, N. et al. (2006). Determinants of drug brain uptake in a rat model of seizure-
associated malformations of cortical development. Neurobiology of Disease, Vol.24,
No.3, (Dec), pp.429-442, ISSN 0969-9961

Marchi, N. et al. (2005). A pilot study on brain-to-plasma partition of 10,11-dyhydro-10-
hydroxy-5H-dibenzo(b,f)azepine-5-carboxamide and MDR1 brain expression in
epilepsy patients not responding to oxcarbazepine. Epilepsia, Vol.46, No.10, (Oct),
pp.1613-1619, ISSN 0013-9580

Marchi, N. et al. (2004). Significance of MDR1 and multiple drug resistance in refractory
human epileptic brain. BMC Med, Vol.2, (Oct 9), pp.37, ISSN 1741-7015

Martin, C. et al. (1999). The molecular interaction of the high affinity reversal agent XR9576
with P-glycoprotein. British Journal of Pharmacology, Vol.128, No.2, (Sep), pp.403-
411, ISSN 0007-1188

Matter, K. & Balda, M.S. (2003a). Holey barrier: claudins and the regulation of brain
endothelial permeability. Journal of Cell Biology, Vol.161, No.3, (May 12), pp.459-460,
ISSN 0021-9525

Matter, K. & Balda, M.S. (2003b). Signalling to and from tight junctions. Nat Rev Mol Cell
Biol, Vol.4, No.3, (Mar), pp.225-236

Michaluk, P. & Kaczmarek, L. (2007). Matrix metalloproteinase-9 in glutamate-dependent
adult brain function and dysfunction. Cell Death and Differentiation, Vol.14, No.7,
(Jul), pp.1255-1258, ISSN 1350-9047



48 Clinical and Genetic Aspects of Epilepsy

Mihaly, A. & Bozoky, B. (1984). Immunohistochemical localization of extravasated serum
albumin in the hippocampus of human subjects with partial and generalized
epilepsies and epileptiform convulsions. Acta Neuropathol, Vol.65, No.1, pp.25-34,
ISSN 0001-6322

Miksys, S. & Tyndale, R.F. (2004). The unique regulation of brain cytochrome P450 2 (CYP2)
family enzymes by drugs and genetics. Drug Metabolism Reviews, Vol.36, No.2,
(May), pp.313-333, ISSN 0360-2532

Miller, DS. et al. (2008). Modulation of P-glycoprotein at the blood-brain barrier:
opportunities to improve central nervous system pharmacotherapy. Pharmacological
Reviews, Vol.60, No.2, (Jun), pp.196-209, ISSN 1521-0081

Miller, D.S. et al. (1998). Protein kinase C regulation of p-glycoprotein-mediated xenobiotic
secretion in renal proximal tubule. American Journal of Physiology, Vol.275, No.5 Pt 2,
(Nov), pp.F785-795, ISSN 0002-9513

Minn, A. et al. (1991). Drug metabolizing enzymes in the brain and cerebral microvessels.
Brain Research Brain Research Reviews, Vol.16, No.1, (Jan-Apr), pp.65-82

Mistry, P. et al. (2001). In vitro and in vivo reversal of P-glycoprotein-mediated multidrug
resistance by a novel potent modulator, XR9576. Cancer Research, Vol.61, No.2, (Jan
15), pp.749-758, ISSN 0008-5472

Mukherjee, S.C. (2001). Epileptic and non-epileptic seizures. Journal of the Indian Medical
Association, Vol.99, No.2, (Feb), pp.78-79, ISSN 0019-5847

Nag, S. (2003). Morphology and molecular properties of cellular components of normal
cerebral vessels. Methods Mol Med, Vol.89, pp.3-36

Nagy, Z. et al. (1984). Fracture faces of cell junctions in cerebral endothelium during normal
and hyperosmotic conditions. Laboratory Investigation, Vol.50, No.3, (Mar), pp.313-
322

Narang, V.S. et al. (2008). Dexamethasone increases expression and activity of multidrug
resistance transporters at the rat blood-brain barrier. Am | Physiol Cell Physiol,
Vol.295, No.2, (Aug), pp.C440-450, ISSN 0363-6143

Nawa, A. et al. (2010). Inducible nitric oxide synthase-mediated decrease of intestinal P-
glycoprotein expression under streptozotocin-induced diabetic conditions. Life
Sciences, Vol.86, No.11-12, (Mar 13), pp.402-409, ISSN 1879-0631

Ndode-Ekane, X.E. et al. (2010). Vascular changes in epilepsy: functional consequences and
association with network plasticity in pilocarpine-induced experimental epilepsy.
Neuroscience, Vol.166, No.1, (Mar 10), pp.312-332, ISSN 1873-7544

Nemeroff, C.B. & Crisley, F.D. (1975). Monosodium L-glutamate-induced convulsions:
temporary alteration in blood-brain barrier permeability to plasma proteins.
Environmental Physiology and Biochemistry, Vol.5, No.6, pp.389-395, ISSN 0300-5429

Neuwelt, E.A. et al. (2011). Engaging neuroscience to advance translational research in brain
barrier biology. Nat Rev Neurosci, Vol.12, No.3, (Mar), pp.169-182, ISSN 1471-0048

Nishijima, T. et al. (2010). Neuronal activity drives localized blood-brain-barrier transport of
serum insulin-like growth factor-I into the CNS. Neuron, Vol.67, No.5, (Sep 9),
pp.834-846, ISSN 1097-4199

Nishimura, M. et al. (2004). Tissue-specific mRNA expression profiles of human nuclear
receptor subfamilies. Drug Metab Pharmacokinet, Vol.19, No.2, (Apr), pp.135-149,
ISSN 1347-4367



The Blood-Brain Barrier in Epilepsy 49

Nitsch, C. & Hubauer, H. (1986). Distant blood-brain barrier opening in subfields of the rat
hippocampus after intrastriatal injections of kainic acid but not ibotenic acid.
Neuroscience Letters, Vol.64, No.1, (Feb 14), pp.53-58, ISSN 0304-3940

Nitsch, C. & Klatzo, I. (1983). Regional patterns of blood-brain barrier breakdown during
epileptiform seizures induced by various convulsive agents. Journal of the
Neurological Sciences, Vol.59, No.3, (Jun), pp.305-322, ISSN 0022-510X

O'kane, R.L. & Hawkins, R.A. (2003). Na+-dependent transport of large neutral amino acids
occurs at the abluminal membrane of the blood-brain barrier. Am ] Physiol
Endocrinol Metab, Vol.285, No.6, (Dec), pp.E1167-1173, ISSN 0193-1849

O'kane, R.L. et al. (1999). Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and
EAATS3) of the blood-brain barrier. A mechanism for glutamate removal. Journal of
Biological Chemistry, Vol.274, No.45, (Nov 5), pp.31891-31895, ISSN 0021-9258

Oby, E. & Janigro, D. (2006). The blood-brain barrier and epilepsy. Epilepsia, Vol.47, No.11,
(Nov), pp.1761-1774, ISSN 0013-9580

Oude Elferink, RP. & Jansen, P.L. (1994). The role of the canalicular multispecific organic
anion transporter in the disposal of endo- and xenobiotics. Pharmacology and
Therapeutics, Vol.64, No.1, (Oct), pp.77-97, ISSN 0163-7258

Owen, A. et al. (2001). Carbamazepine is not a substrate for P-glycoprotein. British Journal of
Clinical Pharmacology, Vol.51, No.4, (Apr), pp-345-349, ISSN 0306-5251

Oztas, B. & Kaya, M. (1991). The effect of acute hypertension on blood-brain barrier
permeability to albumin during experimentally induced epileptic seizures.
Pharmacological Research, Vol.23, No.1, (Jan), pp.41-46, ISSN 1043-6618

Oztas, B. & Sandalci, U. (1984). Reversibility of blood-brain barrier dysfunction in acute
hypertension induced by angiotensin. Experimental Neurology, Vol.84, No.3, (Jun),
pp.666-670, ISSN 0014-4886

Padou, V. et al. (1995). Changes in transport of [14C] alpha-aminoisobutyric acid across the
blood-brain barrier during pentylenetetrazol-induced status epilepticus in the
immature rat. Epilepsy Research, Vol.22, No.3, (Nov), pp.175-183, ISSN 0920-1211

Palade, G.E. (1961). Blood capillaries of the heart and other organs. Circulation, Vol.24,
(Aug), pp.368-388, ISSN 0009-7322

Pardridge, W.M. (1991). Blood-brain barrier transport of glucose, free fatty acids, and ketone
bodies. Advances in Experimental Medicine and Biology, Vol.291, pp.43-53, ISSN 0065-
2598

Pardridge, W.M. (2003a). Blood-brain barrier drug targeting: the future of brain drug
development. Mol Interv, Vol.3, No.2, (Mar), pp.90-105, 151, ISSN 1534-0384

Pardridge, W.M. (2003b). Blood-brain barrier genomics and the use of endogenous
transporters to cause drug penetration into the brain. Curr Opin Drug Discov Devel,
Vol.6, No.5, (Sep), pp.683-691, ISSN 1367-6733

Patel, V.A. et al. (2002). Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2. Journal
of Biological Chemistry, Vol.277, No.41, (Oct 11), pp.38915-38920, ISSN 0021-9258

Pekcec, A. et al. (2009). Targeting prostaglandin E2 EP1 receptors prevents seizure-
associated P-glycoprotein up-regulation. Journal of Pharmacology and Experimental
Therapeutics, Vol.330, No.3, (Sep), pp.939-947, ISSN 1521-0103



50 Clinical and Genetic Aspects of Epilepsy

Pennock, G.D. et al. (1991). Systemic toxic effects associated with high-dose verapamil
infusion and chemotherapy administration. Journal of the National Cancer Institute,
Vol.83, No.2, (Jan 16), pp.105-110, ISSN 0027-8874

Petito, C.K. et al. (1977). Ultrastructural characteristics of the brain and blood-brain barrier
in experimental seizures. Brain Research, Vol.127, No.2, (May 27), pp.251-267, ISSN
0006-8993

Poller, B. et al. (2010). Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by
cytokines in a model of the human blood-brain barrier. Cellular and Molecular
Neurobiology, Vol.30, No.1, (Jan), pp.63-70, ISSN 1573-6830

Potschka, H. et al. (2002). P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and
felbamate at the blood-brain barrier: evidence from microdialysis experiments in
rats. Neuroscience Letters, Vol.327, No.3, (Jul 26), pp.173-176, ISSN 0304-3940

Potschka, H. & Loscher, W. (2001). In vivo evidence for P-glycoprotein-mediated transport
of phenytoin at the blood-brain barrier of rats. Epilepsia, Vol.42, No.10, (Oct),
pp-1231-1240, ISSN 0013-9580

Potschka, H. et al. (2004). Pharmacoresistance and expression of multidrug transporter P-
glycoprotein in kindled rats. Neuroreport, Vol.15, No.10, (Jul 19), pp.1657-1661, ISSN
0959-4965

Ravindranath, V. et al. (1990). NADPH cytochrome P-450 reductase in rat, mouse and
human brain. Biochemical Pharmacology, Vol.39, No.6, (Mar 15), pp.1013-1018, ISSN
0006-2952

Reese, T.S. & Karnovsky, M.]J. (1967). Fine structural localization of a blood-brain barrier to
exogenous peroxidase. Journal of Cell Biology, Vol.34, No.1, (Jul), pp.207-217

Rieder, C.R. et al. (2000). Human brain cytochrome P450 1B1: immunohistochemical
localization in human temporal lobe and induction by dimethylbenz(a)anthracene
in astrocytoma cell line (MOG-G-CCM). Neuroscience Letters, Vol.278, No.3, (Jan 14),
pp-177-180, ISSN 0304-3940

Rigau, V. et al. (2007). Angiogenesis is associated with blood-brain barrier permeability in
temporal lobe epilepsy. Brain, Vol.130, No.Pt 7, (Jul), pp.1942-1956, ISSN 1460-2156

Rigor, R.R. et al. (2010). Activation of PKC isoform beta(I) at the blood-brain barrier rapidly
decreases P-glycoprotein activity and enhances drug delivery to the brain. Journal of
Cerebral Blood Flow and Metabolism, Vol.30, No.7, (Jul), pp.1373-1383, ISSN 1559-7016

Rizzi, M. et al. (2002). Limbic seizures induce P-glycoprotein in rodent brain: functional
implications for pharmacoresistance. Journal of Neuroscience, Vol.22, No.14, (Jul 15),
pp.5833-5839, ISSN 1529-2401

Rodriguez-Baeza, A. et al. (2003). Morphological features in human cortical brain
microvessels after head injury: a three-dimensional and immunocytochemical
study. Anat Rec A Discov Mol Cell Evol Biol, Vol.273, No.1, (Jul), pp.583-593

Ronne-Engstrom, E. et al. (1992). Intracerebral microdialysis of extracellular amino acids in
the human epileptic focus. Journal of Cerebral Blood Flow and Metabolism, Vol.12,
No.5, (Sep), pp.873-876, ISSN 0271-678X

Salazar, A.M. et al. (1985). Epilepsy after penetrating head injury. I. Clinical correlates: a
report of the Vietnam Head Injury Study. Neurology, Vol.35, No.10, (Oct), pp.1406-
1414, ISSN 0028-3878



The Blood-Brain Barrier in Epilepsy 51

Schaefer, J.A. et al. (1975). Disturbance of the blood-brain barrier in electroshock-induced
seizures. Neurology, Vol.25, pp.382

Schlichtiger, J. et al. (2010). Celecoxib treatment restores pharmacosensitivity in a rat model
of pharmacoresistant epilepsy. British Journal of Pharmacology, Vol.160, No.5, (Jul),
pp.1062-1071, ISSN 1476-5381

Seiffert, E. et al. (2004). Lasting blood-brain barrier disruption induces epileptic focus in the
rat somatosensory cortex. Journal of Neuroscience, Vol.24, No.36, (Sep 8), pp.7829-
7836, ISSN 1529-2401

Shang, W. et al. (2008). Expressions of glutathione S-transferase alpha, mu, and pi in brains
of medically intractable epileptic patients. BMC Neurosci, Vol.9, pp.67, ISSN 1471-
2202

Simpson, LA. et al. (2007). Supply and demand in cerebral energy metabolism: the role of
nutrient transporters. Journal of Cerebral Blood Flow and Metabolism, Vol.27, No.11,
(Nov), pp.1766-1791, ISSN 0271-678X

Singh, A. et al. (2010). Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that
confers side population and chemoresistance phenotype. Mol Cancer Ther, Vol.9,
No.8, (Aug), pp.2365-2376, ISSN 1538-8514

Sisodiya, S.M. et al. (2002). Drug resistance in epilepsy: expression of drug resistance
proteins in common causes of refractory epilepsy. Brain, Vol.125, No.Pt 1, (Jan),
pp-22-31, ISSN 0006-8950

Sisodiya, S.M. et al. (2003). Major vault protein, a marker of drug resistance, is upregulated
in refractory epilepsy. Epilepsia, Vol.44, No.11, (Nov), pp.1388-1396, ISSN 0013-9580

Sisodiya, S.M. et al. (2006). Vascular colocalization of P-glycoprotein, multidrug-resistance
associated protein 1, breast cancer resistance protein and major vault protein in
human epileptogenic pathologies. Neuropathology and Applied Neurobiology, Vol.32,
No.1, (Feb), pp.51-63, ISSN 0305-1846

Sokrab, T.E. et al. (1989). Endogenous serum albumin content in brain after short-lasting
epileptic seizures. Brain Research, Vol.489, No.2, (Jun 12), pp.231-236, ISSN 0006-
8993

Spatz, H. (1933). Die Bedeutung der vitalen Farbung fiir die Lehre vom Stoffaustausch
zwischen dem Zentralnervensystem und dem tibrigen Korper. Archiv fiir
Phsychiatrie, Vol.101, pp.267-358

Sperling, M.R. et al. (1999). Seizure control and mortality in epilepsy. Annals of Neurology,
Vol.46, No.1, (Jul), pp.45-50, ISSN 0364-5134

Stamatovic, S.M. et al. (2008). Brain endothelial cell-cell junctions: how to "open" the blood
brain barrier. Curr Neuropharmacol, Vol.6, No.3, (Sep), pp.179-192, ISSN 1570-159X

Stollberger, C. & Finsterer, J. (2003). Nonsteroidal anti-inflammatory drugs in patients with
cardio- or cerebrovascular disorders. Zeitschrift fur Kardiologie, Vol.92, No.9, (Sep),
pp-721-729, ISSN 0300-5860

Strazielle, N. & Ghersi-Egea, J.F. (1999). Demonstration of a coupled metabolism-efflux
process at the choroid plexus as a mechanism of brain protection toward
xenobiotics. Journal of Neuroscience, Vol.19, No.15, (Aug 1), pp.6275-6289, ISSN 0270-
6474

Su, T.Z. et al. (1995). Transport of gabapentin, a gamma-amino acid drug, by system 1 alpha-
amino acid transporters: a comparative study in astrocytes, synaptosomes, and



52 Clinical and Genetic Aspects of Epilepsy

CHO cells. Journal of Neurochemistry, Vol.64, No.5, (May), pp.2125-2131, ISSN 0022-
3042

Sukhai, M. et al. (2001). Decreased expression of P-glycoprotein in interleukin-1beta and
interleukin-6 treated rat hepatocytes. Inflammation Research, Vol.50, No.7, (Jul),
pp.362-370, ISSN 1023-3830

Summers, M.A. et al. (2004). Use of verapamil as a potential P-glycoprotein inhibitor in a
patient with refractory epilepsy. Annals of Pharmacotherapy, Vol.38, No.10, (Oct),
pp-1631-1634, ISSN 1060-0280

Takara, K. et al. (2004). Carvedilol: a new candidate for reversal of MDR1/P-glycoprotein-
mediated multidrug resistance. Anti-Cancer Drugs, Vol.15, No.4, (Apr), pp.303-309,
ISSN 0959-4973

Tan, K.P. et al. (2010). Aryl hydrocarbon receptor is a transcriptional activator of the human
breast cancer resistance protein (BCRP/ABCG2). Molecular Pharmacology, Vol.78,
No.2, (Aug), pp.175-185, ISSN 1521-0111

Tayarani, L. et al. (1987). Evidence for an alanine, serine, and cysteine system of transport in
isolated brain capillaries. Journal of Cerebral Blood Flow and Metabolism, Vol.7, No.5,
(Oct), pp.585-591, ISSN 0271-678X

Thevenod, F. et al. (2000). Up-regulation of multidrug resistance P-glycoprotein via nuclear
factor-kappaB activation protects kidney proximal tubule cells from cadmium- and
reactive oxygen species-induced apoptosis. Journal of Biological Chemistry, Vol.275,
No.3, (Jan 21), pp.1887-1896, ISSN 0021-9258

Tishler, D.M. et al. (1995). MDR1 gene expression in brain of patients with medically
intractable epilepsy. Epilepsia, Vol.36, No.1, (Jan), pp.1-6, ISSN 0013-9580

Tomkins, O. et al. (2011). Blood-brain barrier breakdown following traumatic brain injury: a
possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol, Vol.2011,
Pp.765923, ISSN 2090-0171

Tomkins, O. et al. (2008). Blood-brain barrier disruption in post-traumatic epilepsy. Journal of
Neurology, Neurosurgery and Psychiatry, Vol.79, No.7, (Jul), pp.774-777, ISSN 1468-
330X

Ueda, K. et al. (2007). Glutathione S-transferase M1 null genotype as a risk factor for
carbamazepine-induced mild hepatotoxicity. Pharmacogenomics, Vol.8, No.5, (May),
pp-435-442, ISSN 1744-8042

Ueda, Y. & Tsuru, N. (1995). Simultaneous monitoring of the seizure-related changes in
extracellular glutamate and gamma-aminobutyric acid concentration in bilateral
hippocampi following development of amygdaloid kindling. Epilepsy Research,
Vol.20, No.3, (Mar), pp.213-219, ISSN 0920-1211

Van Vliet, E.A. et al. (2005). Expression of multidrug transporters MRP1, MRP2, and BCRP
shortly after status epilepticus, during the latent period, and in chronic epileptic
rats. Epilepsia, Vol.46, No.10, (Oct), pp.1569-1580, ISSN 0013-9580

Van Vliet, E.A. et al. (2006). Inhibition of the multidrug transporter P-glycoprotein improves
seizure control in phenytoin-treated chronic epileptic rats. Epilepsia, Vol.47, No.4,
(Apr), pp.672-680, ISSN 0013-9580

Van Vliet, E.A. et al. (2007). Region-specific overexpression of P-glycoprotein at the blood-
brain barrier affects brain uptake of phenytoin in epileptic rats. Journal of



The Blood-Brain Barrier in Epilepsy 53

Pharmacology and Experimental Therapeutics, Vol.322, No.1, (Jul), pp.141-147, ISSN
0022-3565

Van Vliet, E.A. et al. (2010). COX-2 inhibition controls P-glycoprotein expression and
promotes brain delivery of phenytoin in chronic epileptic rats. Neuropharmacology,
Vol.58, No.2, (Feb), pp.404-412, ISSN 1873-7064

Vogelgesang, S. et al. (2004). Expression of multidrug transporters in dysembryoplastic
neuroepithelial tumors causing intractable epilepsy. Clinical Neuropathology, Vol.23,
No.5, (Sep-Oct), pp.223-231, ISSN 0722-5091

Volk, B. et al. (1988). First evidence of cytochrome P-450 induction in the mouse brain by
phenytoin. Neuroscience Letters, Vol.84, No.2, (Jan 22), pp.219-224, ISSN 0304-3940

Volk, B. et al. (1995). Localization and characterization of cytochrome P450 in the brain. In
vivo and in vitro investigations on phenytoin- and phenobarbital-inducible
isoforms. Toxicology Letters, Vol.82-83, (Dec), pp.655-662, ISSN 0378-4274

Von Wedel-Parlow, M. et al. (2009). Regulation of major efflux transporters under
inflammatory conditions at the blood-brain barrier in vitro. Journal of
Neurochemistry, Vol.111, No.1, (Oct), pp.111-118, ISSN 1471-4159

Vorbrodt, A.W. & Dobrogowska, D.H. (2003). Molecular anatomy of intercellular junctions
in brain endothelial and epithelial barriers: electron microscopist's view. Brain
Research Brain Research Reviews, Vol.42, No.3, (Jun), pp.221-242

Walther, B. et al. (1986). Subcellular distribution of cytochrome P-450 in the brain. Brain
Research, Vol.375, No.2, (Jun 11), pp.338-344, ISSN 0006-8993

Wang, X. et al. (2011). Aryl hydrocarbon receptor-mediated up-regulation of ATP-driven
xenobiotic efflux transporters at the blood-brain barrier. FASEB Journal, Vol.25,
No.2, (Feb), pp.644-652, ISSN 1530-6860

Wang, X. et al. (2010). Constitutive androstane receptor-mediated up-regulation of ATP-
driven xenobiotic efflux transporters at the blood-brain barrier. Molecular
Pharmacology, Vol.78, No.3, (Sep 1), pp.376-383, ISSN 1521-0111

Weiss, ]. et al. (2003). Interaction of antiepileptic drugs with human P-glycoprotein in vitro.
Journal of Pharmacology and Experimental Therapeutics, Vol.307, No.1, (Oct), pp.262-
267, ISSN 0022-3565

Westergaard, E. (1980). Ultrastructural permeability properties of cerebral microvasculature
under normal and experimental conditions after application of tracers. Advances in
Neurology, Vol.28, pp.55-74, ISSN 0091-3952

Westergaard, E. et al. (1978). Increased permeability to horseradish peroxidase across
cerebral vessels, evoked by electrically induced seizures in the rat. Acta Neuropathol,
Vol.41, No.1, (Jan 19), pp.73-80, ISSN 0001-6322

Wolburg, H. & Lippoldt, A. (2002). Tight junctions of the blood-brain barrier: development,
composition and regulation. Vascul Pharmacol, Vol.38, No.6, (Jun), pp.323-337, ISSN

Yu, C. et al. (2008). Neuroinflammation activates Mdrlb efflux transport through
NFkappaB: promoter analysis in BBB endothelia. Cellular Physiology and
Biochemistry, Vol.22, No.5-6, pp.745-756, ISSN 1421-9778

Zhu, HJ. & Liu, G.Q. (2004). Glutamate up-regulates P-glycoprotein expression in rat brain
microvessel endothelial cells by an NMDA receptor-mediated mechanism. Life
Sciences, Vol.75, No.11, (Jul 30), pp.1313-1322, ISSN 0024-3205



54 Clinical and Genetic Aspects of Epilepsy

Zibell, G. et al. (2009). Prevention of seizure-induced up-regulation of endothelial P-
glycoprotein by COX-2 inhibition. Neuropharmacology, Vol.Epub ahead of print,
doi:10.1016/j.neuropharm.2009.01.009, pp., ISSN

Zlokovic, B.V. & Apuzzo, M.L. (1998). Strategies to circumvent vascular barriers of the
central nervous system. Neurosurgery, Vol.43, No.4, (Oct), pp.877-878




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


