

Regulation of ABC Transporters at the Blood-Brain Barrier: New Targets for CNS Therapy

Worldwide, more than one billion people are affected by CNS disorders. Despite the huge demand for treatments, existing drugs have limited or no efficacy for some neurological diseases, including brain cancer and certain epilepsies. Furthermore, no effective therapies are available at all for some common disorders of the central nervous system (CNS) such as Alzheimer's disease. ATP-binding cassette (ABC) transporters at the blood-brain barrier (BBB) have become increasingly important in the treatment and pathogenesis of CNS disorders. Here we highlight a novel strategy—targeting signaling pathways that control ABC transporters at the BBB—to protect the brain, improve brain drug delivery, and reduce CNS pathology.

■ **Anika M.S. Hartz and Björn Bauer**

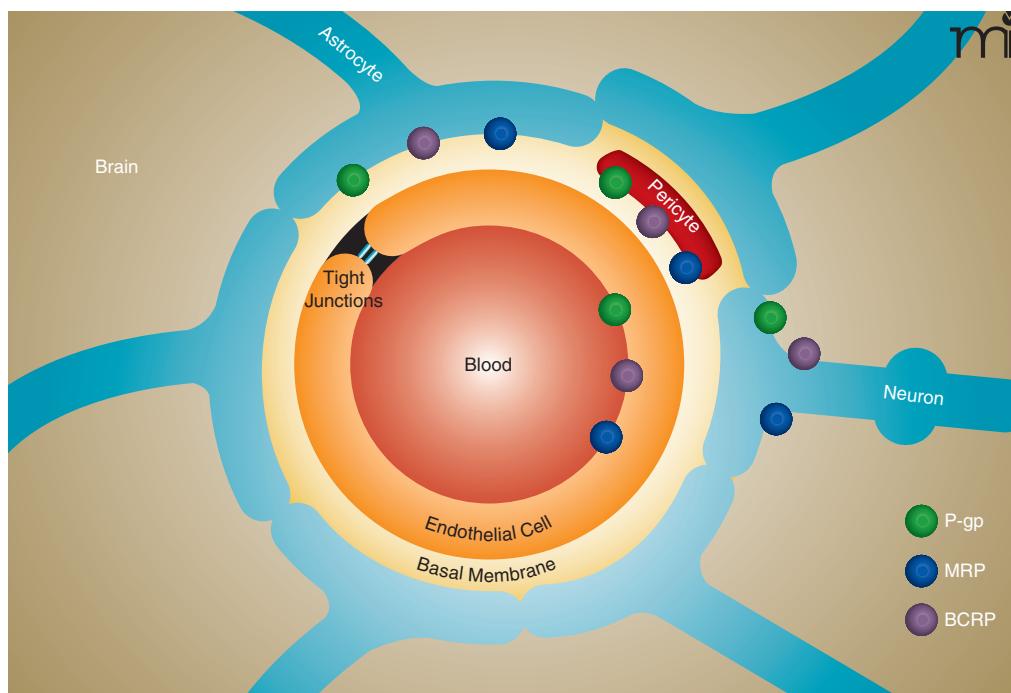
Department of Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN 55812, and Brain Barriers Research Center, College of Pharmacy, University of Minnesota

INTRODUCTION

The blood-brain barrier (BBB) is the interface between blood and brain that resides within the capillary endothelium and controls what goes into and comes out of the central nervous system (CNS). This barrier is highly active, dynamic, selective, and it responds to signals from the periphery and brain in both health and disease. A critical component of active barrier function is a group of ATP-binding cassette (ABC) efflux transporters that protect the brain from xenobiotics, including a myriad of therapeutics, by denying them access to the CNS. In addition to this physiological “gatekeeper” role, emerging evidence suggests that ABC transporters are also implicated in CNS pathology. For example, increased expression of BBB ABC efflux transporters may, in part, cause antiepileptic drug resistance in refractory epilepsy and thus contribute to uncontrolled seizures. In brain cancer, ABC transporters confer resistance to chemotherapeutics at the level of the BBB and in tumor cells in the patient and possibly in tumor stem cells. Moreover, ABC transporters may contribute to tumorigenesis. The role of ABC transporters in neurodegenerative disorders such as Alzheimer’s disease (AD) is also intriguing because they may hold part of the key to understanding the pathogenesis of this disease.

These new research findings call for novel and innovative scientific approaches and therapeutic strategies. One such approach is targeting the intracellular signaling pathways and regulatory networks that control ABC transporters located at the BBB.

This review focuses on recently identified signaling pathways and summarizes transporter regulation in inflammation, during oxidative stress, and by nuclear receptors. This review also highlights examples of how ABC transporters can be targeted to improve the therapy of epilepsy, brain cancer, and AD.


THE BLOOD-BRAIN BARRIER (BBB)/NEUROVASCULAR UNIT

The original concept of a BBB goes back to experiments by Paul Ehrlich in 1885 (1). In his studies, Ehrlich observed that intravenously injected water-soluble dyes stain all organs except the brain and cerebrospinal fluid. Other researchers confirmed this finding, and in 1900, Lewandowsky coined the term “Bluthirnschranke” [German for blood-brain barrier (2)]. As early as 1898, Biedl and Kraus posited that barrier function could reside within the brain capillaries (3), but this hypothesis was not widely accepted until the 1950s. Eventually in the late 1960s, Reese, Karnovsky, and Brightman unequivocally demonstrated the existence of a barrier based on the brain capillary endothelial tight junctions (4, 5).

Today, the so-called neurovascular unit is considered the basic element that underlies BBB structure and function (Figure 1) (6). As currently recognized, the neurovascular unit is a complex anatomical arrangement of at least four cell types—capillary endothelial cells, pericytes, astrocytes, and neurons—that are integrated into one complex that controls barrier function.

Initially considered a passive endothelial barrier to solute diffusion, it is now clear that the BBB is a highly active and dynamic endothelial interface that executes many important functions (7). For example, the BBB plays a crucial role in mediating and translating peripheral signals directed to the brain and vice versa. The BBB also has an immunological function, separating the innate immune system of the CNS from the peripheral immune system by preventing immune cells and pathogens, such as most viruses and bacteria, from entering the brain.

Lastly, the BBB executes a critical function by protecting the brain from xenobiotics. This barrier function of the brain capillary endothelium is based on three components: tight junctions, metabolizing

Figure 1. The blood-brain barrier (BBB)/neurovascular unit. The neurovascular unit comprises four cell types: capillary endothelial cells, pericytes, astrocytes, and neurons. The cells are integrated into one cell complex that controls critical BBB functions. The figure also shows the localization of the ABC drug efflux transporters P-glycoprotein (P-gp), BCRP (breast cancer resistance protein), and MRPs (multidrug resistance associated-proteins).

enzymes, and selective transporters. Tight junctions represent the passive, physical component of the barrier and seal the paracellular spaces between adjacent endothelial cells, thereby restricting uncontrolled solute diffusion from blood to brain. Metabolizing enzymes, the biochemical component of barrier function, are considered a “second line of defense” because they inactivate xenobiotics that have entered the brain capillary endothelial cells. Lastly, transporters can be divided into two groups: 1) highly specific influx transporters including those of the solute carrier superfamily facilitate brain uptake of glucose, amino acids, ions, and other nutrients to meet the energy demand of the brain and 2) ATP-binding cassette (ABC) efflux transporters that represent the molecular basis of selective, active BBB function. ABC efflux transporters utilize ATP to actively clear the brain from metabolic wastes and to prevent xenobiotics, including harmful toxicants and a vast number of therapeutic drugs, from entering the brain. Therefore, ABC efflux transporters in the brain capillary endothelium are considered a “first line of defense” that protects the brain from xenobiotics.

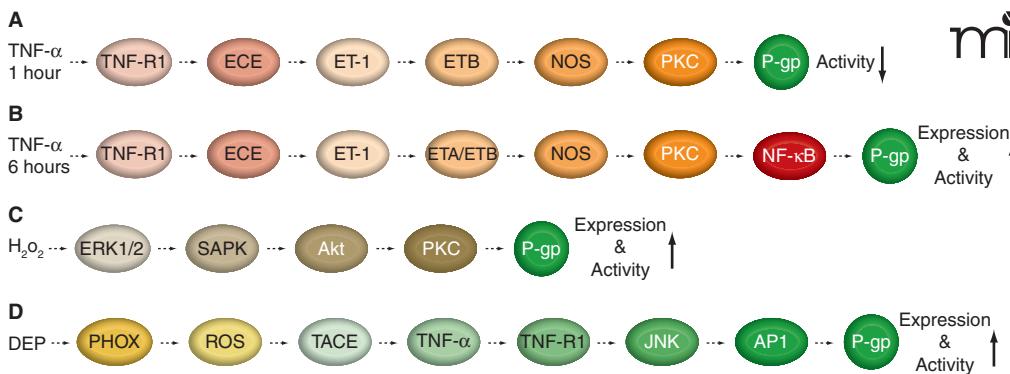
ABC TRANSPORTERS AT THE BBB

In 1989, two independent research groups detected the ABC efflux transporter P-glycoprotein (*ABCB1*, formerly known as *MDR1*) at the human BBB (8, 9). Several years later, P-glycoprotein was found at the BBB in mouse, rat, cat, dog, pig, cow, monkey, dogfish, and killifish (10–16). Since then, P-glycoprotein has been a main focus in the areas of BBB transporter and brain drug-delivery research. The importance of P-glycoprotein for barrier function and brain protection is best highlighted by experiments using genetic knockout mice. *In vivo* dosing studies using P-glycoprotein knockout mice show 5–50-fold increased brain-to-plasma ratios of a large number of therapeutic drugs that are P-glycoprotein substrates and normally cannot cross the BBB to enter the brain (17). Today, P-glycoprotein is considered the most prominent element of selective, active barrier function that limits xenobiotics from entering the brain.

Another ABC transporter at the BBB is BCRP (breast cancer resistance protein, *ABCG2*). Shortly after BCRP discovery in human and rat brain capillaries, it became clear that this transporter also plays a crucial role in brain-to-blood efflux of xenobiotics (18, 19). In this regard, BCRP and P-glycoprotein have partially overlapping substrate spectra. They cooperate to limit xenobiotics from entering the brain (20), and they compensate for one another (21). This cooperation and compensation are critical features that must be overcome for delivering chemotherapeutics across the BBB to treat brain tumors.

In addition to P-glycoprotein and BCRP, the multidrug resistance protein isoforms 1, 2, 3, 4, and 5 (MRPs 1–5; *ABCC1–5*) have also been identified at the BBB (22). MRPs are ABC efflux transporters that mainly transport organic anions, glutathione, glucuronide- or sulfate-conjugated compounds, and various

nucleoside analogs. MRP1, 3, and 5 are highly expressed in brain tumors such as glioblastoma, in the tumor-supplying vasculature, and in the parenchymal tissue surrounding the tumor, where they confer resistance to chemotherapeutics (23); MRP1 has also been found in cancer stem cells (24). Furthermore, overexpression of MRPs in the brain capillary endothelium is associated with antiepileptic drug resistance in patients with epilepsy (25). Lastly, studies demonstrate that lack of MRP2 at the BBB results in increased brain drug levels, indicating a CNS protective role for this transporter (26).


The importance of P-glycoprotein, BCRP, and the MRPs for the BBB stems from four critical characteristics these transporters share: 1) substantial protein expression; 2) localization in the luminal plasma membrane of brain capillary endothelial cells, at the interface between blood and CNS; 3) highly effective and potent ATP-driven efflux transport against a concentration gradient; and 4) a remarkably broad substrate spectrum that covers a wide range of structurally diverse therapeutic drugs such as morphine, lapatinib, and cyclosporine A. These characteristics allow ABC drug efflux transporters at the BBB to protect the brain from toxicants while simultaneously restricting therapeutic drugs from entering the brain, and thus, impairing effective CNS pharmacotherapy. This observation poses a tremendous challenge for delivering drugs into the brain and limits successful treatment of CNS disorders.

TARGETING ABC EFFLUX TRANSPORTERS TO IMPROVE CNS PHARMACOTHERAPY

Two strategies have been introduced to overcome efflux transporter-mediated, active, selective BBB function: transporter inhibition and modulation of transporter regulation.

TRANSPORTER INHIBITION TO IMPROVE BRAIN DRUG DELIVERY

By utilizing transporter inhibitors, one might overcome the function of the efflux transporter-mediated barrier and improve drug delivery to the brain. A large number of compounds have been screened for their ability to inhibit the major BBB ABC drug efflux transporters P-glycoprotein, BCRP, and MRPs; several potent inhibitors for each transporter have been identified (27). Results of animal studies testing these compounds were encouraging, and phase I and phase II clinical studies showed promise for some inhibitors (28, 29). Phase III trials, however, were disappointing and had to be terminated because of severe side effects and deaths (30). These trials demonstrate that in humans transporter inhibitors seem to have low potency, weak effectiveness, and poor selectivity, and would have to be given chronically at high doses to block transporter function effectively. However, such a therapeutic regimen bears an increased risk of severe side effects. Owing to these complications, no transporter inhibitors are currently in clinical use to improve brain delivery of CNS drugs.

Figure 2. Regulation of BBB ABC transporters by inflammatory mediators and oxidative stress. (A and B)

Time-dependent regulation of P-glycoprotein through a signaling pathway that involves the pro-inflammatory mediator tumor necrosis factor- α (TNF- α), TNF- α receptor 1 (TNF-R1), endothelin-converting enzyme (ECE), endothelin-1 (ET-1), endothelin A and B receptors (ETA/B), nitric oxide synthase (NOS), protein kinase C (PKC), and nuclear factor- κ B (NF- κ B). (C) Regulation of P-glycoprotein through a signaling pathway that involves the reactive oxygen species hydrogen peroxide (H₂O₂), extracellular signal-regulated kinase 1/2 (ERK1/2), stress-activated protein kinase (SAPK), protein kinase B (Akt), and protein kinase C (PKC). (D) Regulation of P-glycoprotein through a signaling pathway that is triggered by DEP (diesel exhaust particles) and involves NADPH oxidase (PHOX), reactive oxygen species (ROS), TNF- α -converting enzyme (TACE), TNF- α , TNF-R1, c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1).

TARGETING ABC TRANSPORTER REGULATION

Given the drawbacks of direct transporter inhibition, recent research has focused on elucidating the intracellular signaling pathways that control ABC efflux transporters at the BBB. The rationale for this approach is that finding the molecular switches of these transporters will allow selective modulation of transporter function and/or expression for therapeutic purposes in different clinical scenarios. Such an approach has three advantages. First, although direct transporter inhibition leaves little control over the extent and duration of barrier opening, targeting transporter regulation allows more subtle changes in transporter activity so transporters can be turned off for brief, controlled periods of time. Exploring this approach provides a time window during which the barrier is open to deliver normally nonpenetrating CNS drugs and reduces the risk of harmful toxicants entering the brain. Second, direct inhibition that blocks transporter activity can only be used to improve brain drug delivery. Targeting transporter regulation, on the other hand, can also be used specifically to increase transporter expression and/or activity to increase barrier function for therapeutic purposes. Such a strategy provides the opportunity to enhance brain protection and minimize central side effects during treatment of peripheral diseases. For example, the so-called “chemo brain” is a chemotherapy-induced cognitive dysfunction characterized by cognitive impairment that occurs in 20–30% of patients undergoing chemotherapy to treat cancer in the periphery. Therefore, treatment of patients with compounds that increase expression levels and activity of BBB efflux transporters prior to chemotherapy has the potential to reduce central side effects caused by anticancer drugs. Third, BBB ABC efflux transporters are affected by and contribute to CNS disease pathology (31, 32). Studies show that the efflux transporters P-glycoprotein, BCRP,

and MRPs are involved in CNS disorders such as epilepsy, brain cancer, and AD where their role extends beyond that of solely extruding drugs. In such cases, direct transporter inhibition will not be of therapeutic benefit, whereas targeting the signaling pathways that control these transporters could be a useful therapeutic strategy. Thus, understanding the signaling pathways through which BBB ABC efflux transporters are regulated provides opportunities to protect the brain during treatment of peripheral diseases, to improve brain drug delivery to treat CNS

disorders, and to prevent pathogenesis or slow the progression of CNS diseases.

Recently, several signaling pathways and regulatory networks that control efflux transporters have been identified at the BBB. We will first discuss basic signaling pathways that involve inflammatory mediators, oxidative stress, and nuclear receptors that have not been linked to one specific brain disorder. We will then focus on three specific pathways that regulate brain capillary efflux transporters in epilepsy, brain cancer, and AD.

REGULATION OF ABC TRANSPORTERS BY INFLAMMATORY MEDIATORS

Brain inflammation is involved in a variety of CNS disorders such as multiple sclerosis, stroke, brain cancer, epilepsy, and AD and Parkinson’s diseases (31). The release of pro-inflammatory cytokines in these CNS diseases triggers profound changes in gene expression in the brain and the BBB including changes in expression of ABC drug efflux transporters. The inflammatory mediators that have been studied most for their effect on efflux transporters are tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), interleukin-6 (IL-6), interferon- γ (IFN- γ), and endothelin-1 (ET-1), and best described are their effects on P-glycoprotein. One of the first *in vivo* studies, by Goralski et al., shows that intracranial microinjection of lipopolysaccharide into rats to trigger cytokine-induced inflammation decreases P-glycoprotein expression in the brain, resulting in increased brain levels of the P-glycoprotein substrate digoxin (33). Consistent with this, intraperitoneally administered lipopolysaccharide inhibits BBB P-glycoprotein function in mice (34).

In vitro studies addressing the mechanism of BBB transporter regulation in inflammation demonstrate that TNF- α , IL-1 β , IL-2, IL-6, and IFN- γ decrease P-glycoprotein expression and/or

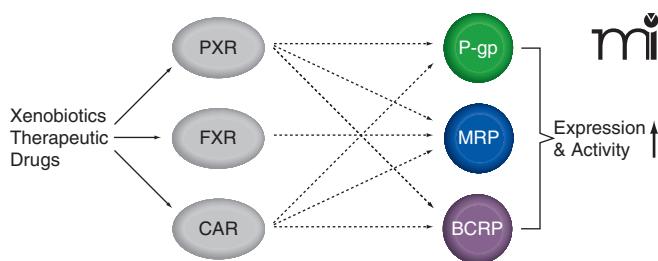
transport function in human brain endothelial cell lines (35, 36). Other groups, however, report an increase in transporter expression and function (37, 38). Hence, the first studies addressing BBB ABC transporter regulation in inflammation are inconclusive. This alleged contradiction is not surprising because inflammation is a complex process. These studies suggest instead that cytokine-mediated changes in P-glycoprotein expression and/or transport activity are time-, dose-, and location-dependent. For example, exposing isolated brain capillaries to nanomolar concentrations of TNF- α for a short period of time (one hour) rapidly decreases P-glycoprotein transport activity within minutes (39, 40). In this pathway (Figure 2A), TNF- α signals through the TNF receptor 1 (TNFR1), which triggers the release of ET-1 followed by signaling through the endothelin receptor B (ET_B) and downstream activation of nitric oxide synthase (NOS) and protein kinase C (PKC). In contrast, long-term (six hour) exposure of brain capillaries to TNF- α increases P-glycoprotein expression and transport activity (Figure 2B). TNF- α signals through the same pathway (TNF-R1, ET-1, ET_A/ET_B, NOS, PKC), which, at longer exposures, involves both ET_A and ET_B as well as the transcription factor nuclear factor-kappa B (NF- κ B) (41–43). Thus, P-glycoprotein transport activity is reduced after short exposure to TNF- α but increased with longer exposure times, indicating a complex, time-dependent regulatory mechanism. These findings suggest that brief activation of this signaling pathway could possibly be used to rapidly decrease P-glycoprotein transport activity, providing a window-in-time for delivering therapeutic drugs into the brain.

In a recent proof-of-principle study, Rigor et al. demonstrate that *in vivo* activation of this TNF- α signaling pathway reduces P-glycoprotein transport activity, which enhances brain uptake of verapamil (44). Another study focuses on the effect of vascular endothelial growth factor (VEGF), which can be induced by TNF- α (45). This study shows that VEGF mediates rapid and reversible loss of BBB P-glycoprotein transport activity in isolated brain capillaries and that signaling involves the VEGF receptor flk-1 and the protein tyrosine kinase Src (46). Thus far, little is known about the regulation of other ABC drug efflux transporters at the BBB during inflammation. A study by von Wedel-Parlow et al. shows that TNF- α and IL-1 β both decrease BCRP protein expression and function in brain capillary endothelial cells (47), which was previously demonstrated with ET-1 treatment (41). Poller et al. also demonstrate suppression of BCRP by IL-1 β , IL-6, and TNF- α in a human BBB cell culture model (48).

These studies show that brain inflammation leads to profound changes of drug efflux transporters at the BBB and that complex, context-dependent regulation underlies the direction (increase or decrease) and extent of these changes. Given that brain inflammation is a major component of most CNS disorders, future research will likely identify more pathways where pro-inflammatory mediators signal changes in BBB transporter expression and/or function. Such knowledge could potentially be used to improve drug delivery into the brain.

REGULATION OF ABC TRANSPORTERS BY OXIDATIVE STRESS

Brain inflammation is often accompanied by oxidative stress, which participates in ischemia and neurodegenerative disorders such as AD and Parkinson's disease. Recent studies show that in response to cellular stress both microglia and brain capillary endothelial cells can be major sources of reactive oxygen species, which affect ABC drug efflux transporters, and thus, BBB function (31, 49).


The first evidence for transporter regulation by oxidative stress at the BBB comes from *in vitro* experiments with hydrogen peroxide. Exposure of primary rat brain endothelial cells to hydrogen peroxide (for 24–48 hours) increases expression and transport activity of P-glycoprotein but not of Mrp1 (50). Nwaozuzu et al. confirm these findings and demonstrate that hydrogen peroxide-activated signaling through extracellular signal-regulated kinase 1/2 (ERK1/2), stress-activated protein kinase (SAPK), protein kinase B (Akt), and protein kinase C (PKC) increases P-glycoprotein expression and function (51) (Figure 2C).

Oxidative stress is also implicated in ischemia and stroke. Increased expression of P-glycoprotein, BCRP, and Mrp5 is observed in the periinfarct region following reversible middle cerebral artery occlusion in rats (52), and Spudich et al. show increased P-glycoprotein expression (3–24 hours) after focal cerebral ischemia in a mouse model (53). Moreover, this study demonstrates that pharmacological inhibition or genetic knockout of P-glycoprotein enhances the accumulation and efficacy of P-glycoprotein substrates such as FK506 and rifampicin in the ischemic brain.

In addition to brain inflammation, environmental toxins—such as diesel exhaust particles (DEP), a solid, small particulate matter air pollutant—also cause oxidative stress. DEP enter the body through the lungs and reach the brain (54, 55), where they trigger production of pro-inflammatory cytokines and reactive oxygen species (ROS). When isolated rat brain capillaries are exposed to DEP, P-glycoprotein expression and functional activity increases (49). This effect is mediated by NADPH oxidase activation and production of ROS, which initiates TNF- α converting enzyme (TACE)-mediated TNF- α release and signaling through TNF-R1, c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) (Figure 2D). DEP exposure also increases expression of BCRP and several Mrp transporters, but it is not clear whether the identified signaling pathway is responsible for increased expression of all these ABC transporters or if other pathways may also be involved.

Lastly, other studies show that glutathione (GSH) depletion, which is involved in the pathogenesis of neurological disorders, increases oxidative stress in the brain that affects endothelial cells (56). Chronic oxidative stress induced by GSH depletion during CNS disease increases P-glycoprotein expression and transport function at the BBB *in vitro* and *in vivo* (57, 58).

These findings imply that oxidative-stress-mediated increases of drug efflux transporter expression tighten the BBB, which

Figure 3. Regulation of BBB ABC transporters by nuclear receptors. Xenobiotic- and therapeutic-drug-mediated activation of the nuclear receptors pregnane X receptor (PXR), farnesoid X receptor (FXR), and constitutive androstane receptor (CAR) increases the expression of multiple ABC transporters at the BBB, creating a regulatory network.

reduces drug penetration into the brain, and as a result, reduces efficacy of CNS drugs.

REGULATION OF ABC TRANSPORTERS BY NUCLEAR RECEPTORS

In recent years, several nuclear receptors have been detected at the BBB including the pregnane X receptor (PXR), the farnesoid X receptor (FXR), and the constitutive androstane receptor (CAR). These nuclear receptors control the body's defense, elimination, and excretory systems, that is, metabolizing enzymes and efflux transporters, in the liver, kidney, and intestine (59). It is now understood that these ligand-activated nuclear receptors also regulate enzymes and transporters in the brain capillary endothelium. Nuclear receptors are transcription factors that are activated by ligand binding, which initiates transcription of their target genes. PXR, FXR, and CAR are activated by endogenous compounds such as steroids, bile acids, and xenobiotics, including a large number of therapeutic drugs. At the BBB, nuclear receptor activation increases ABC transporter expression, which tightens barrier function (Figure 3). This phenomenon is demonstrated in three recent studies. In the first study, transgenic mice expressing human PXR are treated with the PXR activator rifampicin, which increases P-glycoprotein expression and transport activity in brain capillaries and results in reduced central antinociception of the P-glycoprotein substrate methadone (60). This finding suggests that increased P-glycoprotein reduces methadone uptake in the brain and, consequently, reduces the central methadone effect. In the second study, the PXR activator pregnenolone-16 α -carbonitrile and the FXR ligand chenodeoxycholic acid increase BBB expression of the ABC transporter Mrp2 and the phase II metabolizing enzyme GST π (glutathione-sulfotransferase π) (61). This finding suggests coordinated nuclear receptor regulation of metabolism and transport at the BBB, comparable to what has previously been demonstrated in the liver. In the third study, Wang et al. report that exposure of isolated rat brain capillaries to the CAR activators phenobarbital and TCPOBOP {1,4-bis[2-(3,5-dichloro-pyridyloxy)] benzene} increases transport activity and protein expression of P-glycoprotein, BCRP, and Mrp2 (62). In vivo experiments with TCPOBOP confirm

these findings and show increased protein expression and transport activity of all three transporters. Consistent with this observation, increased transporter expression is not observed in isolated capillaries from dosed CAR knockout mice (62).

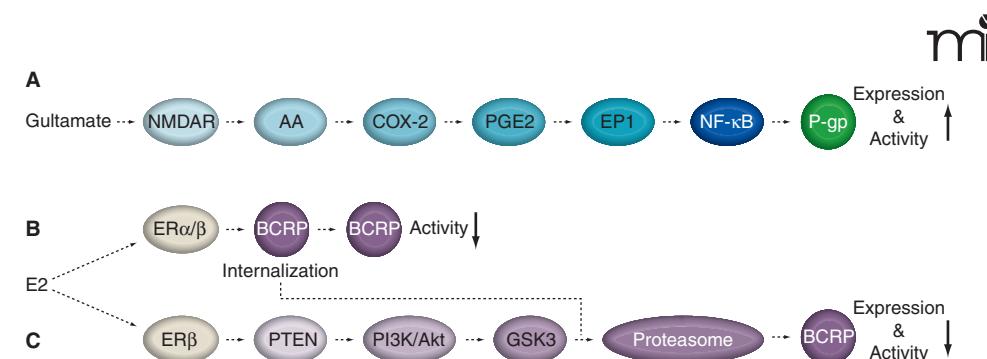
These three studies show that nuclear receptor activation at the BBB increases brain capillary-localized ABC transporter expression and activity, resulting in barrier tightening. Because polypharmacy is a given in the clinic, PXR-mediated drug-drug interactions are a realistic scenario and could possibly be the basis for severe complications. This phenomenon is best highlighted by reports from transplant patients taking St. John's Wort, an over-the-counter herbal antidepressant, in combination with the immunosuppressant cyclosporine A (63–65). The main constituent of St. John's Wort is hyperforin, a potent human PXR activator that increases expression of metabolizing enzymes and drug efflux transporters, leading to altered pharmacokinetics of coadministered drugs (66). Accordingly, St. John's Wort reduces cyclosporine A below therapeutic levels in patients, which results in transplant rejections. Indeed, of the multiple medications used by patients on a daily basis, some could activate nuclear receptors at the BBB, leading to increased ABC transporter expression, barrier tightening, and reduced brain uptake of CNS drugs. Certainly, drug-drug interaction at the level of the brain capillary endothelium would pose a major problem for CNS pharmacotherapy. On the other hand, nuclear receptor-mediated BBB tightening could be exploited for therapeutic purposes to protect the brain by selectively increasing expression of efflux transporters. This approach could be useful to prevent CNS side effects during treatment of diseases in the periphery (mentioned above). Selective up-regulation of BBB transporter expression via nuclear receptor activation could also be a useful strategy for brain disorders characterized by diminished transporter expression and/or activity. One such example is AD, in which BBB P-glycoprotein expression is reduced (discussed further below).

It is currently unknown whether changes in nuclear receptor-mediated transporter expression play a role at the BBB in humans, whether such changes could cause drug-drug side effects in the brain capillaries in humans, or whether this approach could be used therapeutically. Accumulating clinical data indicates, however, that nuclear receptors participate in the regulation of ABC transporters in intestine, liver, and kidney. It is possible that this will also be the case at the human BBB.

TARGETING ABC TRANSPORTERS IN EPILEPSY

Epilepsy is the most common serious neurological brain disorder and affects more than sixty million people worldwide. The majority of epileptic patients can be treated with antiepileptic drugs (AEDs), but despite the advances in drug development and the introduction of novel and effective AEDs in the past fifteen years, about 40% of patients—more than twenty million people, including two million children—respond poorly to AED

pharmacotherapy (67, 68). These patients suffer from uncontrolled seizures that can vary in frequency (from few seizures per month up to thirty seizures per day) and duration lasting between seconds to hours (69). Because uncontrolled seizures can cause brain damage, patients experiencing prolonged seizures (*status epilepticus*) need immediate and effective treatment. However, therapeutic failure owing to AED resistance puts these patients in a life-threatening situation (70, 71). Consequently, patients with drug-resistant epilepsy have a sevenfold higher mortality compared to the general population or epileptic patients who respond to pharmacotherapy (72). In general, nonresponsive patients experience a low quality of life; despite advances in pharmacotherapy and neurosurgery, drug-resistant epilepsy remains a major clinical problem (73).


The cause for AED resistance in epilepsy is not yet fully understood, but various hypotheses exist. The multidrug transporter hypothesis of epilepsy posits that the number of ABC drug transporters, such as P-glycoprotein, BCRP, and MRPs, is increased at the BBB and might impart AED resistance (61, 74, 75). This hypothesis is based on the following findings. First, P-glycoprotein, BCRP, and MRPs are overexpressed in brain capillaries and in epileptogenic brain tissue from AED-resistant patients (76). Second, transporter inhibition increases brain uptake of several AEDs in animal seizure models (77). And third, prevention of seizure-induced transporter expression improves AED efficacy in drug-resistant epilepsy animal models (78). Moreover, recent studies imply that P-glycoprotein, BCRP, and MRPs might work in concert to prevent AEDs from entering the brain. Furthermore, ABC transporter overexpression at the BBB has been connected to increased seizure occurrence (79). This body of evidence has led to thorough investigation of the mechanism responsible for ABC transporter up-regulation at the BBB in epilepsy and a signaling pathway has been mapped for the induction of P-glycoprotein expression. In this pathway, seizures induce neuronal and glial release of glutamate, which signals through the N-methyl D-aspartate receptor (NMDA receptor), cyclooxygenase-2 (COX-2), prostanoid E receptor 1 (EP1), and NF- κ B, resulting in increased expression of P-glycoprotein in brain capillaries (80–84) (Figure 4A). Consistent with this signaling pathway, seizure-induced P-glycoprotein up-regulation can be blocked by treating rats with celecoxib, a specific COX-2 inhibitor (84), and with SC-51089, a specific EP1 inhibitor (85). Importantly, van

Vliet et al. demonstrate that COX-2 inhibition prevents induced P-glycoprotein expression and enhances brain uptake of phenytoin in rats with recurrent seizures. Schlichtiger et al. show that pretreatment with celecoxib restores the anticonvulsant efficacy of phenobarbital in AED-resistant rats that do not exhibit a significant response to phenobarbital prior to celecoxib treatment (78).

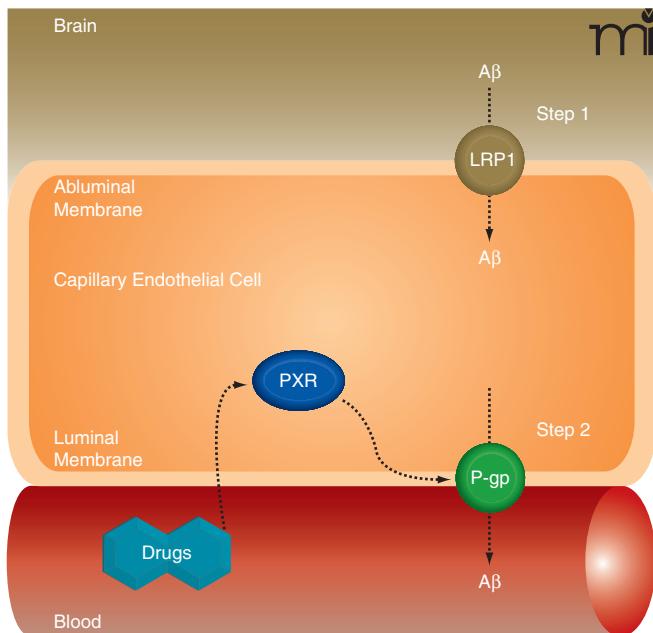
These studies provide a “proof-of-principle” that targeting signaling proteins involved in seizure-induced P-glycoprotein up-regulation may be a promising strategy to control transporter expression, increase brain levels of AEDs in the epileptic brain, and enhance AED efficacy to reduce seizure occurrence and frequency. It remains to be determined if these findings can be translated into the clinic. COX-2 inhibitors have been linked with severe side effects; thus, they will likely not be the first drugs of choice. Other proteins in the signaling pathway could potentially serve as better therapeutic targets to selectively modulate regulation of ABC transporters in epilepsy.

TARGETING ABC TRANSPORTERS IN BRAIN CANCER

ABC transporters are best known for their contribution to multidrug resistance in cancer, where they prevent anticancer drugs from entering tumor cells through active efflux. Such transporter-mediated drug resistance limits the therapeutic benefit of chemotherapy. Research initially focused on inhibiting single transporters, but recent *in vivo* studies using transporter knock-out mouse models show that BCRP and P-glycoprotein work in concert at the BBB and possibly also in brain cancer cells and brain cancer stem cells to limit penetration of chemotherapeutics (20, 86, 87). These are tremendous clinical problems because successful treatment of brain tumors depends on chemotherapeutics to reach effective concentrations in the brain to eradicate metastases and brain tumor stem cell remnants that cannot be removed by surgery or irradiation.

Figure 4. Targeting BBB ABC transporters in epilepsy and brain cancer. (A) Seizure-induced glutamate release up-regulates P-glycoprotein via a signaling pathway that involves the NMDA receptor (NMDAR), arachidonic acid (AA), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), the prostanoid E1 receptor (EP1), and the transcription factor NF- κ B (nuclear factor- κ B). E2 (17 β -estradiol) signals reduction of BCRP expression (B) and its functional activity through a nongenomic signaling pathway that involves ER α/β , (C) the phosphatase and tensin homolog (PTEN, a tumor suppressor), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase 3 (GSK3), transporter internalization, and proteasomal degradation.

Beyond their role in drug resistance, ABC transporters may also be involved in tumorigenesis (88). Tumors have an inflammatory microenvironment that stimulates tumor cell proliferation and that promotes angiogenesis and metastasis, thereby ensuring cell survival. ABC transporters might help create this inflammatory microenvironment by transporting pro-tumorigenic factors such as prostaglandins, leukotrienes, cyclic nucleotides, and platelet-activating factor out of cancer cells. Once in the extracellular fluid, these molecules are thought to bind to their extracellular G protein-coupled receptors via autocrine or paracrine signaling and sustain cancer-related inflammation (88). This mechanism is not yet fully understood, and the exact role ABC transporters play in tumorigenesis needs to be elucidated. However, based on observations that ABC transporters are highly expressed in tumors and tumor stem cells, that they potently confer chemotherapy resistance, and that they may be involved in tumor generation, proliferation, and survival, these transporters may be major targets in cancer therapy. Thus, identifying pathways that can be specifically targeted to decrease the expression of ABC transporters in cancer will be an important step toward improving chemotherapy of cancer, especially brain tumors.


In one such pathway, BCRP transport function in isolated brain capillaries is rapidly reduced by nanomolar concentrations of 17 β -estradiol (E2) (89). Detailed dose-response experiments result in an E2 EC₅₀ of 0.18 nmol/L, indicating that E2 is more potent in reducing capillary BCRP transport function than well-known BCRP inhibitors such as GF120918, fumitremorgin C, or Ko143. E2-mediated reduction of BCRP transport activity occurs within minutes, is reversible, and does not involve transcription, translation, or proteasomal degradation, indicating a non-genomic mechanism. Experiments using pharmacological inhibitors for estrogen receptor (ER) α and β , as well as experiments with ER α and ER β knockout mice, demonstrate that E2 signals through both receptors to decrease BCRP transport function (Figure 4B). Extended, six-hour exposure of brain capillaries *ex vivo* to E2 or dosing mice with E2 leads to reduced BCRP expression and functional activity (90). Additional experiments reveal that E2 signaling involves ER β , phosphatase and tensin homolog (PTEN, a tumor suppressor), phosphoinositide 3-kinase (PI3K), Akt, and glycogen synthase kinase 3 (GSK3), and eventually results in internalization and proteasomal degradation of BBB BCRP (Figure 4C). Signaling through PTEN-PI3K-Akt regulates BCRP transport activity in glioma tumor stem-like cells (91). These data indicate that blocking the E2-signaling pathway reduces BCRP transport activity at the BBB and in cancer stem cells, suggesting that such an approach could potentially be used to increase brain uptake of chemotherapeutics that are BCRP substrates and improve their anticancer efficacy. Future studies will determine whether targeting ABC transporter regulation is also a viable strategy to interfere with their ability to transport tumorigenic factors and inhibit tumor angiogenesis, metastasis, and survival.

TARGETING ABC TRANSPORTERS IN ALZHEIMER'S DISEASE (AD)

AD is a devastating brain disorder and AD patients decline mentally and physically and transform from functioning human beings into care-requiring dependents (92). There is currently no cure, no marker for early diagnosis, and no therapeutic intervention to prevent the disease, to alleviate disease symptoms, or to slow disease progression. AD is a complex neurodegenerative disease characterized by accumulation of neurotoxic amyloid β (A β) in the brain. A β is a small peptide that is generated by cleavage of amyloid precursor protein (APP); the most common A β isoforms in AD are A β 40 and A β 42. In healthy individuals, A β brain levels are low, but in AD patients, A β can be increased up to 100-fold in the brain, where it aggregates and forms plaques (93). These A β plaques are a hallmark for AD pathology and contribute to neuronal degeneration, memory loss, and dementia (93).

Recent reports indicate that A β brain accumulation, in part, arises from a failure to clear A β from the brain across the capillary endothelium into the blood (94, 95). This A β clearance mechanism must be a two-step process where A β must first pass through the abluminal (brain-side) and then the luminal (blood-side) plasma membranes of the brain capillary endothelial cells (Figure 5). Because A β is a 39–43 amino acid peptide, both steps must be facilitated by receptors and/or transporters. At the abluminal membrane, low-density lipoprotein receptor-related protein 1 (LRP1) seems to be the major protein responsible for the first step of A β uptake from the brain into capillary endothelial cells (94). Increasing evidence indicates that the primary protein at the luminal membrane mediating the critical second step—A β efflux from endothelial cells into blood—is P-glycoprotein. First, cell lines transfected with human P-glycoprotein can transport A β (96, 97). Second, A β brain clearance is reduced in P-glycoprotein null mice, and P-glycoprotein inhibition increases A β brain levels in a transgenic AD mouse model (98). Third, brain capillary P-glycoprotein levels are significantly reduced in postmortem brain samples from individuals with high A β brain deposition (99, 100). And fourth, BBB P-glycoprotein levels decrease with age, which could be one explanation why advanced age is associated with the highest risk for AD (11, 101).

Consistent with these observations, results from a recent study show that P-glycoprotein transports A β in isolated rat and mouse brain capillaries (102). This study also demonstrates that P-gp expression and transport activity are reduced by about 70% in brain capillaries from a transgenic AD mouse model [A β -overproducing human amyloid precursor protein (hAPP) mice], suggesting a link between high A β levels and reduced brain capillary P-glycoprotein in AD. Importantly, treating hAPP mice for seven days with pregnenolone-16 α -carbonitrile, a specific activator for the nuclear receptor PXR (pregnane X receptor), fully restores BBB P-glycoprotein expression levels and decreases A β brain burden by up to 65%. Furthermore, results of a recent clinical trial

Figure 5. Targeting BBB P-glycoprotein in Alzheimer's disease (AD). Proposed two-step A β clearance mechanism involving LRP1 (low-density lipoprotein receptor-related protein 1) in the abluminal membrane and P-glycoprotein in the luminal membrane of brain capillary endothelial cells. Ligand-activation of PXR restores blood-brain barrier P-glycoprotein in an AD mouse model and lowers A β brain levels.

show that rifampicin, a human PXR activator, improved cognition in AD patients over the twelve-month period of the study (103).

In addition to P-glycoprotein, BCRP also affects the accumulation of A β in the brain (104, 105). Xiong et al. demonstrate that BCRP transports A β in BCRP-overexpressing cell lines, that A β accumulates in the brain of BCRP knockout mice, and that BCRP expression is increased in brain samples from AD patients. The latter result, however, is contrary to what one would expect if BCRP is involved in A β clearance from the brain. These studies were conducted with postmortem brain samples from demented AD patients and with late-stage, cognitively impaired AD mice. In contrast, the study by Hartz et al., where no evidence was found for BCRP-mediated A β transport in brain capillaries, was conducted in twelve-week-old hAPP mice, at an age prior to cognitive impairment (102). This suggests that BCRP may not be involved in early stages of AD but may play a role in advanced stages of the disease. At this point, however, the role of BCRP in AD remains largely unclear and needs further investigation.

Together, these findings indicate that BBB transporters might be critical in AD onset and/or progression, which offers exciting opportunities for new treatments. In particular, restoring reduced BBB P-glycoprotein to normal expression levels in AD could be a novel therapeutic strategy to enhance A β brain clearance, thereby lowering A β brain load, delaying onset, and slowing progression of AD. However, because PXR regulates many target genes, PXR activation might not be the best approach to restore BBB

P-glycoprotein therapeutically. Targeting other signaling pathways might therefore provide better alternatives to restore brain capillary P-glycoprotein in AD.

CONCLUSIONS

ABC efflux transporters at the BBB restrict delivery of drugs into the brain, which severely impairs pharmacotherapy of CNS disorders. Beyond this role in drug efflux, it is now clear that ABC transporters are also affected by and contribute to CNS pathology. This new paradigm provides opportunities for novel therapeutic strategies and requires innovative approaches to modulate BBB transporters for treatment purposes in different clinical scenarios. Unraveling intracellular signaling pathways and networks, and identifying molecular switches that regulate ABC transporters at the BBB, will provide new molecular targets for CNS therapy. Thus, targeting ABC transporter regulation at the BBB will help protect the brain, improve brain drug delivery, and prevent and slow progression of CNS pathology. doi:10.1124/mi.10.5.6

Acknowledgments

We thank Emma Soldner and Emily Madole for editorial assistance. This work was supported by the Whiteside Institute for Clinical Research and the Duluth Medical Research Institute (to AH and BB), and by an AACR New Investigator Award and a UMN GIA Award (both to BB).

References

1. Ehrlich P (1885) Das Sauerstoff-Bedürfniss des Organismus. Eine farbenanalytische Studie. *Verlag von August Hirschwald* 1–167.
2. Lewandowsky M (1900) Zur Lehre von der Cerebrospinalflüssigkeit. *Zeitschrift für Klinische Medicin* **40**:480–494.
3. Biedl A and Kraus R (1898) Über eine bisher unbekannte toxische Wirkung der Gallensäuren auf das Zentralnervensystem. *Centralblatt für innere Medicin* **47**:1185–1200.
4. Reese TS and Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. *J Cell Biol* **34**:207–217.
5. Brightman MW and Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. *J Cell Biol* **40**:648–677.
6. Hawkins BT and Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. *Pharmacol Rev* **57**:173–185.
7. Begley DJ and Brightman MW (2003) Structural and functional aspects of the blood-brain barrier. *Prog Drug Res* **61**:39–78.
8. Cordon-Cardo C, O'Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, and Bertino JR (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. *Proc Natl Acad Sci USA* **86**:695–698. **This study shows for the first time expression of P-glycoprotein at the blood-brain barrier.**
9. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, and Willingham MC (1989) Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: Evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. *J Histochem Cytochem* **37**:159–164.
10. Miller DS, Graeff C, Droulle L, Fricker S, and Fricker G (2002) Xenobiotic efflux pumps in isolated fish brain capillaries. *Am J Physiol Regul Integr Comp Physiol* **282**:R191–R198.

11. Pekcec A, Schneider EL, Baumgartner W, Stein VM, Tipold A, and Potschka H (2009) Age-dependent decline of blood-brain barrier P-glycoprotein expression in the canine brain. *Neurobiol Aging* doi:10.1016/j.neurobiolaging.2009.08.014
12. Schlachetzki F and Pardridge WM (2003) P-glycoprotein and caveolin-1alpha in endothelium and astrocytes of primate brain. *Neuroreport* **14**:2041–2046.
13. Jette L and Beliveau R (1993) P-glycoprotein is strongly expressed in brain capillaries. *Adv Exp Med Biol* **331**:121–125.
14. Jette L, Tetu B, and Beliveau R (1993) High levels of P-glycoprotein detected in isolated brain capillaries. *Biochim Biophys Acta* **1150**:147–154.
15. Nobmann S, Bauer B, and Fricker G (2001) Ivermectin excretion by isolated functionally intact brain endothelial capillaries. *Br J Pharmacol* **132**:722–728.
16. Tsai CE, Daood MJ, Lane RH, Hansen TW, Gruetzmacher EM, and Watchko JF (2002) P-glycoprotein expression in mouse brain increases with maturation. *Biol Neonate* **81**:58–64.
17. Schinkel AH, Wagenaar E, Mol CA, and van Deemter L (1996) P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. *J Clin Invest* **97**:2517–2524. **This work highlights the importance of P-glycoprotein as a gatekeeper at the blood-brain barrier.**
18. Cooray HC, Blackmore CG, Maskell L, and Barrand MA (2002) Localisation of breast cancer resistance protein in microvessel endothelium of human brain. *Neuroreport* **13**:2059–2063.
19. Hori S, Ohtsuki S, Tachikawa M, Kimura N, Kondo T, Watanabe M, Nakashima E, and Terasaki T (2004) Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). *J Neurochem* **90**:526–536.
20. de Vries NA, Zhao J, Kroon E, Buckle T, Beijnen JH, and van Tellingen O (2007) P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. *Clin Cancer Res* **13**:6440–6449. **This paper shows that P-glycoprotein and BCRP cooperate at the blood-brain barrier.**
21. Cisternino S, Mercier C, Bourasset F, Roux F, and Schermann JM (2004) Expression up-regulation and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. *Cancer Res* **64**:3296–3301.
22. Roberts LM, Black DS, Raman C, Woodford K, Zhou M, Haggerty JE, Yan AT, Cwirla SE, and Grindstaff KK (2008) Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. *Neuroscience* **155**:423–438.
23. Calatozzolo C, Gelati M, Ciusani E, Sciacca FL, Pollo B, Cajola L, Marras C, Silvani A, Vitellaro-Zuccarello L, Croci D, et al. (2005) Expression of drug resistance proteins Pgp MRP1 MRP3 MRP5 and GST-pi in human glioma. *J Neurooncol* **74**:113–121.
24. Lee G, Dallas S, Hong M, and Bendayan R (2001) Drug transporters in the central nervous system: Brain barriers and brain parenchyma considerations. *Pharmacol Rev* **53**:569–596.
25. Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W, Mayberg MR, Bengez L, and Janigro D (2001) Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. *Epilepsia* **42**:1501–1506.
26. Potschka H, Fedrowitz M, and Loscher W (2003) Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. *J Pharmacol Exp Ther* **306**:124–131.
27. Avendano C and Menendez JC (2002) Inhibitors of multidrug resistance to antitumor agents (MDR). *Curr Med Chem* **9**:159–193.
28. Advani R, Fisher GA, Lum B, L, Hausdorff J, Halsey J, Litchman M, and Sikic BI (2001) A phase I trial of doxorubicin paclitaxel and valspar (PSC 833) a modulator of multidrug resistance. *Clin Cancer Res* **7**:1221–9.
29. Dorr R, Karanes C, Spier C, Grogan T, Greer J, Moore J, Weinberger B, Schiller G, Pearce T, Litchman M, et al. (2001) Phase I/II study of the P-glycoprotein modulator PSC 833 in patients with acute myeloid leukemia. *J Clin Oncol* **19**:1589–1599.
30. Lhomme C, Joly F, Walker JL, Lissoni AA, Nicoletto MO, Manikhas GM, Baekelandt MM, Gordon AN, Fracasso PM, Mietlowski WL, et al. (2008) Phase III study of valspar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. *J Clin Oncol* **26**:2674–2682.
31. Miller DS, Bauer B, and Hartz AM (2008) Modulation of P-glycoprotein at the blood-brain barrier: Opportunities to improve central nervous system pharmacotherapy. *Pharmacol Rev* **60**:196–209.
32. Shen S and Zhang W (2010) ABC transporters and drug efflux at the blood-brain barrier. *Rev Neurosci* **21**:29–53.
33. Goralski KB, Hartmann G, Piquette-Miller M, and Renton KW (2003) Downregulation of mdr1a expression in the brain and liver during CNS inflammation alters the in vivo disposition of digoxin. *Br J Pharmacol* **139**:35–48.
34. Salkeni MA, Lynch JL, Otamis-Price T, and Banks WA (2009) Lipopolysaccharide impairs blood-brain barrier P-glycoprotein function in mice through prostaglandin- and nitric oxide-independent pathways. *J Neuroimmune Pharmacol* **4**:276–282.
35. Fernandez C, Buyse M, German-Fattal M, and Gimenez F (2004) Influence of the pro-inflammatory cytokines on P-glycoprotein expression and functionality. *J Pharm Pharm Sci* **7**:359–371.
36. Theron D, Barraud de Laggerie S, Tardivel S, Pelerin H, Demeuse P, Mercier C, Mabondzo A, Farinotti R, Lacour B, et al. (2003) Influence of tumor necrosis factor-alpha on the expression and function of P-glycoprotein in an immortalised rat brain capillary endothelial cell line GPNT. *Biochem Pharmacol* **66**:579–587.
37. Tan KH, Purcell WM, Heales SJ, McLeod JD, and Hurst RD (2002) Evaluation of the role of P-glycoprotein in inflammation induced blood-brain barrier damage. *Neuroreport* **13**:2593–2597.
38. Seelbach MJ, Brooks TA, Egleton RD, and Davis TP (2007) Peripheral inflammatory hyperalgesia modulates morphine delivery to the brain: A role for P-glycoprotein. *J Neurochem* **102**:1677–1690.
39. Hartz AM, Bauer B, Fricker G, and Miller DS (2004) Rapid regulation of P-glycoprotein at the blood-brain barrier by endothelin-1. *Mol Pharmacol* **66**:387–394.
40. Hartz AM, Bauer B, Fricker G, and Miller DS (2006) Rapid modulation of P-glycoprotein-mediated transport at the blood-brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. *Mol Pharmacol* **69**:462–470.
41. Bauer B, Hartz AM, and Miller DS (2007) Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. *Mol Pharmacol* **71**:667–675.
42. Pan W, Yu C, Hsueh H, and Kastin AJ (2010) The role of cerebral vascular NFkappaB in LPS-induced inflammation: Differential regulation of efflux transporter and transporting cytokine receptors. *Cell Physiol Biochem* **25**:623–630.
43. Yu C, Argyropoulos G, Zhang Y, Kastin A, J, Hsueh H, and Pan W (2008) Neuroinflammation activates Mdr1b efflux transport through NFkappaB: Promoter analysis in BBB endothelia. *Cell Physiol Biochem* **22**:745–756.
44. Rigor RR, Hawkins BT, and Miller DS (2010) Activation of PKC isoform beta(I) at the blood-brain barrier rapidly decreases P-glycoprotein activity and enhances drug delivery to the brain. *J Cereb Blood Flow Metab* **30**:1373–1383.
45. Tuomisto TT, Rissanen TT, Vajanto I, Korkeela A, Rutanen J, and Yla-Hertuala S (2004) HIF-VEGF-VEGFR-2 TNF-alpha and IGF pathways are upregulated in critical human skeletal muscle ischemia as studied with DNA array. *Atherosclerosis* **174**:111–120.
46. Hawkins BT, Sykes DB, and Miller DS (2010) Rapid reversible modulation of blood-brain barrier P-glycoprotein transport activity by vascular endothelial growth factor. *J Neurosci* **30**:1417–1425.
47. von Wedel-Parlow M, Wolte P, and Galla HJ (2009) Regulation of major efflux transporters under inflammatory conditions at the blood-brain barrier in vitro. *J Neurochem* **111**:111–118.

48. Poller B, Drewe J, Krahenbuhl S, Huwyler J, and Gutmann H (2010) Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood-brain barrier. *Cell Mol Neurobiol* **30**:63–70.

49. Hartz AM, Bauer B, Block ML, Hong JS, and Miller DS (2008) Diesel exhaust particles induce oxidative stress proinflammatory signaling and P-glycoprotein up-regulation at the blood-brain barrier. *FASEB J* **22**:2723–2733.

50. Felix RA and Barrand MA (2002) P-glycoprotein expression in rat brain endothelial cells: Evidence for regulation by transient oxidative stress. *J Neurochem* **80**:64–72.

51. Nwaouzou OM, Sellers LA, and Barrand MA (2003) Signalling pathways influencing basal and H₂O₂-induced P-glycoprotein expression in endothelial cells derived from the blood-brain barrier. *J Neurochem* **87**:1043–1051.

52. Dazert P, Suofu Y, Grube M, Popa-Wagner A, Kroemer H. K, Jedlitschky G, and Kessler C (2006) Differential regulation of transport proteins in the periinfarct region following reversible middle cerebral artery occlusion in rats. *Neuroscience* **142**:1071–1079.

53. Spudich A, Kilic E, Xing H, Kilic U, Rentsch KM, Wunderli-Allenspach H, Bassetti CL, and Hermann DM (2006) Inhibition of multidrug resistance transporter-1 facilitates neuroprotective therapies after focal cerebral ischemia. *Nat Neurosci* **9**:487–488.

54. Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen L. C, Geiser M, Reed W, Rothen-Rutishauser B, Schurch S, and Schulz H (2006) Translocation and potential neurological effects of fine and ultrafine particles a critical update. *Part Fibre Toxicol* **3**:13.

55. Calderon-Garciduenas L, Franco-Lira M, Torres-Jardon R, Henriquez-Roldan C, Barragan-Mejia G, Valencia-Salazar G, Gonzalez-Maciel A, Reynoso-Robles R, Villarreal-Calderon R, and Reed W (2007) Pediatric respiratory and systemic effects of chronic air pollution exposure: nose lung heart and brain pathology. *Toxicol Pathol* **35**:154–162.

56. Bains JS and Shaw CA (1997) Neurodegenerative disorders in humans: The role of glutathione in oxidative stress-mediated neuronal death. *Brain Res Brain Res Rev* **25**:335–358.

57. Hong H, Lu Y, Ji ZN, and Liu GQ (2006) Up-regulation of P-glycoprotein expression by glutathione depletion-induced oxidative stress in rat brain microvessel endothelial cells. *J Neurochem* **98**:1465–1473.

58. Wu J, Ji H, Wang YY, Wang Y, Li YQ, Li WG, Long Y, Xia YZ, and Hong H (2009) Glutathione depletion upregulates P-glycoprotein expression at the blood-brain barrier in rats. *J Pharm Pharmacol* **61**:819–824.

59. Kliewer SA, Goodwin B, and Willson TM (2002) The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism. *Endocr Rev* **23**:687–702.

60. Bauer B, Yang X, Hartz AM, Olson ER, Zhao R, Kalvass JC, Pollack GM, and Miller DS (2006) In vivo activation of human pregnane X receptor tightens the blood-brain barrier to methadone through P-glycoprotein up-regulation. *Mol Pharmacol* **70**:1212–1219. **This study demonstrates for the first time that up-regulation of brain capillary P-glycoprotein through hPXR activation further tightens the blood-brain barrier to drugs.**

61. Bauer B, Hartz AM, Lucking JR, Yang X, Pollack GM, and Miller DS (2008) Coordinated nuclear receptor regulation of the efflux transporter Mrp2 and the phase-II metabolizing enzyme GSTpi at the blood-brain barrier. *J Cereb Blood Flow Metab* **28**:1222–1234.

62. Wang X, Sykes DB, and Miller DS (2010) Constitutive androstanone receptor-mediated upregulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier. *Mol Pharmacol* **78**(3):376–383.

63. Breidenbach T, Hoffmann MW, Becker T, Schlitt H, and Klempnauer J (2000) Drug interaction of St John's wort with cyclosporin. *Lancet* **355**:1912.

64. Karlova M, Treichel U, Malago M, Frilling A, Gerken G, and Broelsch CE (2000) Interaction of *Hypericum perforatum* (St. John's wort) with cyclosporin A metabolism in a patient after liver transplantation. *J Hepatol* **33**:853–855.

65. Ruschitzka F, Meier PJ, Turina M, Luscher TF, and Noll G (2000) Acute heart transplant rejection due to Saint John's wort. *Lancet* **355**:548–549.

66. Moore LB, Goodwin B, Jones SA, Wisely GB, Serabjit-Singh CJ, Willson TM, Collins JL, and Kliewer SA (2000) St. John's wort induces hepatic drug metabolism through activation of the pregnane X receptor. *Proc Natl Acad Sci U S A* **97**:7500–7502.

67. Guerrini R (2006) Epilepsy in children. *Lancet* **367**:499–524.

68. Loscher W and Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. *Nat Rev Neurosci* **6**:591–602. **This review article provides a comprehensive overview of the role of blood-brain barrier transporters in CNS disorders.**

69. Piazzini A, Ramaglia G, Turner K, Chifari R, Kiky EE, Canger R, and Canevini MP (2007) Coping strategies in epilepsy: 50 drug-resistant and 50 seizure-free patients. *Seizure* **18**:211–217.

70. Iannetti P, Spalice A, and Parisi P (2005) Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. *Epilepsia* **46**:967–969.

71. Sperling MR (2001) Sudden unexplained death in epilepsy. *Epilepsy Curr* **1**:21–23.

72. Sperling MR, Feldman H, Kinman J, Liporace JD, and O'Connor MJ (1999) Seizure control and mortality in epilepsy. *Ann Neurol* **46**:45–50.

73. Devinsky O (1999) Patients with refractory seizures. *N Engl J Med* **340**:1565–1570.

74. Potschka H, Volk HA, and Loscher W (2004) Pharmacoresistance and expression of multidrug transporter P-glycoprotein in kindled rats. *Neuroreport* **15**:1657–1661.

75. Sisodiya SM, Lin WR, Harding BN, Squier MV, and Thom M (2002) Drug resistance in epilepsy: Expression of drug resistance proteins in common causes of refractory epilepsy. *Brain* **125**:22–31.

76. Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, and Raffel C (1995) MDR1 gene expression in brain of patients with medically intractable epilepsy. *Epilepsia* **36**:1–6. **This study shows for the first time that MDR1 mRNA is up-regulated in brain capillaries from patients with refractory epilepsy.**

77. van Vliet EA, van Schaik R, Edelbroek PM, Redeker S, Aronica E, Wadman WJ, Marchi N, Vezzani A, and Gorter JA (2006) Inhibition of the multidrug transporter P-glycoprotein improves seizure control in phenytoin-treated chronic epileptic rats. *Epilepsia* **47**:672–680.

78. Schlichtiger J, Pekcec A, Bartmann H, Winter P, Fuest C, Soerensen J, and Potschka H (2010) Celecoxib treatment restores pharmacosensitivity in a rat model of pharmacoresistant epilepsy. *Br J Pharmacol* **160**:1062–1071.

79. Marchi N, Gonzalez-Martinez J, Nguyen M. T, Granata T, and Janigro D (2010) Transporters in drug-refractory epilepsy: Clinical significance. *Clin Pharmacol Ther* **87**:13–15.

80. Bankstahl JP, Hoffmann K, Bethmann K, and Loscher W (2008) Glutamate is critically involved in seizure-induced overexpression of P-glycoprotein in the brain. *Neuropharmacology* **54**:1006–1016.

81. Bauer B, Hartz AM, Pekcec A, Toellner K, Miller DS, and Potschka H (2008) Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. *Mol Pharmacol* **73**:1444–1453. **This study provides first insights into the signaling pathway through which seizures potentially increase P-glycoprotein at the blood-brain barrier.**

82. Pekcec A, Unkrue B, Schlichtiger J, Soerensen J, Hartz AM, Bauer B, van Vliet EA, Gorter JA, and Potschka H (2009) Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation. *J Pharmacol Exp Ther* **330**:939–947.

83. Zhu HJ and Liu GQ (2004) Glutamate up-regulates P-glycoprotein expression in rat brain microvessel endothelial cells by an NMDA receptor-mediated mechanism. *Life Sci* **75**:1313–1322.

84. Zibell G, Unkrue B, Pekcec A, Hartz AM, Bauer B, Miller DS, and Potschka H (2009) Prevention of seizure-induced up-regulation of endothelial P-glycoprotein by COX-2 inhibition. *Neuropharmacology* doi:10.1016/j.neuropharm.2009.01.009

85. Fischborn SV, Soerensen J, and Potschka H (2010) Targeting the prostaglandin E2 EP1 receptor and cyclooxygenase-2 in the amygdala kindling model in mice. *Epilepsy Res* **91**:57–65.

86. Chen Y, Agarwal S, Shaik NM, Chen C, Yang Z, and Elmquist WF (2009) P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. *J Pharmacol Exp Ther* **330**:956–963.

87. Polli JW, Olson KL, Chism JP, John-Williams LS, Yeager RL, Woodard SM, Otto V, Castellino S, and Demby VE (2009) An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-[3-chloro-4-[(3-fluorobenzyl)oxy]phenyl]-6-[5-((2-(methylsulfonyl)-ethyl)amino)methyl]-2-furyl)-4-quinazolinamine; GW572016). *Drug Metab Dispos* **37**:439–442.

88. Fletcher JI, Haber M, Henderson MJ, and Norris MD (2010) ABC transporters in cancer: more than just drug efflux pumps. *Nat Rev Cancer* **10**:147–156.

89. Hartz AM, Mahringer A, Miller DS, and Bauer B (2010) 17-beta-Estradiol: A powerful modulator of blood-brain barrier BCRP activity. *J Cereb Blood Flow Metab* doi:10.1038/jcbfm.2010.36

90. Hartz AM, Madole EK, Miller DS, and Bauer B (2010) Estrogen receptor beta signaling through phosphatase and tensin homolog/phosphoinositide 3-kinase/Akt/glycogen synthase kinase 3 down-regulates blood-brain barrier breast cancer resistance protein. *J Pharmacol Exp Ther* **334**:467–476. **This study demonstrates for the first time the existence of a signaling pathway that controls BCRP at the blood-brain barrier.**

91. Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, and Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. *Cell Stem Cell* **4**:226–235.

92. Mega MS, Cummings JL, Fiorello T, and Gornbein J (1996) The spectrum of behavioral changes in Alzheimer's disease. *Neurology* **46**:130–135.

93. Hardy J and Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. *Science* **297**:353–356.

94. Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Xu F, Parisi M, LaRue B, Hu HW, et al. (2004) LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. *Neuron* **43**:333–344.

95. Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer's neurodegeneration. *Trends Neurosci* **28**:202–208.

96. Kuhnke D, Jedlitschky G, Grube M, Krohn M, Jucker M, Mosyagin I, Cascorbi I, Walker LC, Kroemer HK, Warzok RW, et al. (2007) MDR1-P-Glycoprotein (ABCB1) mediates transport of Alzheimer's amyloid-beta peptides—implications for the mechanisms of Abeta clearance at the blood-brain barrier. *Brain Pathol* **17**:347–353.

97. Lam FC, Liu R, Lu P, Shapiro A, B, Renoir JM, Sharom FJ, and Reiner PB (2001) beta-Amyloid efflux mediated by p-glycoprotein. *J Neurochem* **76**:1121–1128. **This study shows that P-glycoprotein transports amyloid β .**

98. Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL, Sagare A, Bales KR, et al. (2005) P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. *J Clin Invest* **115**:3285–3290. **This study demonstrates that inhibition of P-glycoprotein affects amyloid β brain levels.**

99. Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer H, K, Siegmund W, Kunert-Keil C, Walker LC, and Warzok RW (2002) Deposition of Alzheimer's beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. *Pharmacogenetics* **12**:535–541.

100. Vogelgesang S, Warzok R, W, Cascorbi I, Kunert-Keil C, Schroeder E, Kroemer HK, Siegmund W, Walker LC, and Pahnke J (2004) The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimer's disease. *Curr Alzheimer Res* **1**:121–125.

101. Bartels AL, Kortekaas R, Bart J, Willemsen AT, de Klerk OL, de Vries JJ, van Oostrom JC, and Leenders KL (2009) Blood-brain barrier P-glycoprotein function decreases in specific brain regions with aging: A possible role in progressive neurodegeneration. *Neurobiol Aging* **30**:1818–1824.

102. Hartz AM, Miller DS, and Bauer B (2010) Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer's disease. *Mol Pharmacol* **77**:715–723.

103. Loeb MB, Molloy DW, Smieja M, Standish T, Goldsmith CH, Mahony J, Smith S, Borrie M, Decoteau E, Davidson W, et al. (2004) A randomized controlled trial of doxycycline and rifampin for patients with Alzheimer's disease. *J Am Geriatr Soc* **52**:381–387.

104. Tai LM, Loughlin AJ, Male DK, and Romero IA (2009) P-glycoprotein and breast cancer resistance protein restrict apical-to-basolateral permeability of human brain endothelium to amyloid-beta. *J Cereb Blood Flow Metab* **29**:1079–1083.

105. Xiong H, Callaghan D, Jones A, Bai J, Rasquinha I, Smith C, Pei K, Walker D, Lue LF, Stanimirovic D, et al. (2009) ABCG2 is upregulated in Alzheimer's brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides. *J Neurosci* **29**:5463–5475.

Anika M.S. Hartz, PhD, is Assistant Professor in the College of Pharmacy, University of Minnesota. She holds a BS in pharmacy from the University of Heidelberg, Germany, and received her doctorate in pharmaceutical sciences/pharmacology from the same institution; her doctoral work concerned with the regulation of P-glycoprotein at the blood-brain barrier. Dr. Hartz continued her work as a postdoctoral fellow at the NIEHS/NIH and then as a Research Associate in the Department of Biochemistry and Molecular Biology, Medical School, University of Minnesota. She works on efflux transporter regulation in Alzheimer's disease and brain cancer.

Björn Bauer, PhD, is Assistant Professor in the College of Pharmacy at the University of Minnesota. He received a BS in pharmacy and a PhD in pharmaceutical sciences/pharmacology from the University of Heidelberg, Germany, and then conducted work as a Postdoctoral Fellow at the NIEHS/NIH in Research Triangle Park, NC. Dr. Bauer's research focuses on the intracellular regulation of blood-brain barrier ABC transporters in CNS disease. E-mail: bjbauer@d.umn.edu; fax 218-726-6500.